On a statistic for testing the homogeneity of polynomial samples
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $M \geqslant 2$ independent polynomial samples with $N$ outcomes. For the case when $M$ and $N$ are fixed but sizes of samples tend to infinity we find limit distributions of a new statistic ${\sigma^2}$: chi-square distribution with $(M - 1)(N - 1)$ degrees of freedom if samples are statistically homogeneous, non-central chi-square distribution with the same number of degrees of freedom if samples are «convergent» to homogeneous ones, and normal distribution if samples are statistically nonhomogeneous.
Keywords: polynomial samples, homogeneity test, non-central chi-square distribution.
@article{DM_2014_26_3_a2,
     author = {A. M. Zubkov and B. I. Selivanov},
     title = {On a statistic for testing the homogeneity of polynomial samples},
     journal = {Diskretnaya Matematika},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - B. I. Selivanov
TI  - On a statistic for testing the homogeneity of polynomial samples
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 30
EP  - 44
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/
LA  - ru
ID  - DM_2014_26_3_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A B. I. Selivanov
%T On a statistic for testing the homogeneity of polynomial samples
%J Diskretnaya Matematika
%D 2014
%P 30-44
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/
%G ru
%F DM_2014_26_3_a2
A. M. Zubkov; B. I. Selivanov. On a statistic for testing the homogeneity of polynomial samples. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/