On a statistic for testing the homogeneity of polynomial samples
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $M \geqslant 2$ independent polynomial samples with $N$ outcomes. For the case when $M$ and $N$ are fixed but sizes of samples tend to infinity we find limit distributions of a new statistic ${\sigma^2}$: chi-square distribution with $(M - 1)(N - 1)$ degrees of freedom if samples are statistically homogeneous, non-central chi-square distribution with the same number of degrees of freedom if samples are «convergent» to homogeneous ones, and normal distribution if samples are statistically nonhomogeneous.
Keywords: polynomial samples, homogeneity test, non-central chi-square distribution.
@article{DM_2014_26_3_a2,
     author = {A. M. Zubkov and B. I. Selivanov},
     title = {On a statistic for testing the homogeneity of polynomial samples},
     journal = {Diskretnaya Matematika},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - B. I. Selivanov
TI  - On a statistic for testing the homogeneity of polynomial samples
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 30
EP  - 44
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/
LA  - ru
ID  - DM_2014_26_3_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A B. I. Selivanov
%T On a statistic for testing the homogeneity of polynomial samples
%J Diskretnaya Matematika
%D 2014
%P 30-44
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/
%G ru
%F DM_2014_26_3_a2
A. M. Zubkov; B. I. Selivanov. On a statistic for testing the homogeneity of polynomial samples. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/

[1] Kramer G., Matematicheskie metody statistiki, GIIL, Moskva, 1948

[2] Mitra S. K., “On the limiting power function of the frequency chi-square test”, Annals Math. Statist., 29:4 (1958), 1221–1233 | DOI | MR | Zbl

[3] Meng R. C., Chapman D. G., “The power of chi-square tests for contingency tables”, Journal American Statist. Assoc., 61:361 (1966), 965–975 | DOI | MR | Zbl

[4] Zubkov A. M., Selivanov B. I., “Novaya statistika dlya proverki odnorodnosti polinomialnykh vyborok”, Obozr. prikl. i prom. matem., 16:1 (2009), 78–79 | MR

[5] Selivanov B. I., “Ob odnom klasse statistik khi-kvadrat”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 926–966

[6] Rao S. R., Lineinye statisticheskie metody i ikh primenenie, Nauka, Moskva, 1968 | MR | Zbl

[7] Selivanov B. I., “Ob odnom klasse statistik polinomialnykh vyborok”, Diskretnaya matematika, 21:2 (2009), 126–137 | DOI | MR | Zbl

[8] Selivanov B. I., “O statistikakh – differentsiruemykh funktsiyakh chastot iskhodov $M$ polinomialnykh vyborok”, Obozr. prikl. i prom. matem., 12:4 (2005), 872–873

[9] Dik J. J., Gunst M. C. M., “The distribution of general quadratic form in normal variables”, Statistica Neerlandica, 39:1 (1985), 14–26 | DOI | MR | Zbl

[10] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1974