On a statistic for testing the homogeneity of polynomial samples
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $M \geqslant 2$ independent polynomial samples with $N$ outcomes. For the case when $M$ and $N$ are fixed but sizes of samples tend to infinity we find limit distributions of a new statistic ${\sigma^2}$: chi-square distribution with $(M - 1)(N - 1)$ degrees of freedom if samples are statistically homogeneous, non-central chi-square distribution with the same number of degrees of freedom if samples are «convergent» to homogeneous ones, and normal distribution if samples are statistically nonhomogeneous.
Keywords:
polynomial samples, homogeneity test, non-central chi-square distribution.
@article{DM_2014_26_3_a2,
author = {A. M. Zubkov and B. I. Selivanov},
title = {On a statistic for testing the homogeneity of polynomial samples},
journal = {Diskretnaya Matematika},
pages = {30--44},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/}
}
A. M. Zubkov; B. I. Selivanov. On a statistic for testing the homogeneity of polynomial samples. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a2/