On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo~$k$
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

Polynomial normal forms for functions of $k$-valued logics (for prime values of $k$) are considered. A polynomial normal form modulo $k$ (p.n.f.) is the sum modulo $k$ of products of variables, or variables with one or several Post negations, taken with some coefficients. The length of a p.n.f. is the number of distinct terms that appear in the form with nonzero coefficients. If $k$ is a prime number, then each function of $k$-valued logic may be represented by various p.n.f. The length of a function of $k$-valued logic in the class of p.n.f. is the minimum length of a p.n.f. representing this function. The Shannon function $L_k^{p.n.f.}(n)$ of the length of functions of $k$-valued logic in the class of p.n.f. is the maximum length of a function in the class of p.n.f. among all $n$-ary functions of $k$-valued logic. In this work the order of growth of the Shannon function $L_k^{p.n.f}(n)$ is established (for prime values of $k$): $L_k^{p.n.f.}(n) = \Theta\left (\frac{k^n}{n}\right )$.
Keywords: function of $k$-valued logic, Boolean function, polynomial representation, polynomial normal form, length, Shannon function, shading set, covering, minimal covering.
@article{DM_2014_26_3_a0,
     author = {M. A. Bashov and S. N. Selezneva},
     title = {On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo~$k$},
     journal = {Diskretnaya Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a0/}
}
TY  - JOUR
AU  - M. A. Bashov
AU  - S. N. Selezneva
TI  - On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo~$k$
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 3
EP  - 9
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a0/
LA  - ru
ID  - DM_2014_26_3_a0
ER  - 
%0 Journal Article
%A M. A. Bashov
%A S. N. Selezneva
%T On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo~$k$
%J Diskretnaya Matematika
%D 2014
%P 3-9
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a0/
%G ru
%F DM_2014_26_3_a0
M. A. Bashov; S. N. Selezneva. On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo~$k$. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 3-9. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a0/