Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption
Diskretnaya Matematika, Tome 26 (2014) no. 1, pp. 143-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete stochastic model of inventory control based on a controlled semi-Markov process. Probabilistic characteristics of the semi-Markov process are found along with characteristics of a stationary cost functional connected with this process. It is proved that an optimal policy of inventory control is a deterministic one. Explicit analitical representation of stationary functional characterising the control quality is obtained. An optimal control problem is reduced to the solution of an extremal problem for a multivariate function.
Keywords: inventory control, semi-Markov process, optimal control.
@article{DM_2014_26_1_a11,
     author = {P. V. Shnurkov and A. V. Ivanov},
     title = {Analysis of a discrete {semi-Markov} model of continuous inventory control with periodic interruptions of consumption},
     journal = {Diskretnaya Matematika},
     pages = {143--154},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_1_a11/}
}
TY  - JOUR
AU  - P. V. Shnurkov
AU  - A. V. Ivanov
TI  - Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 143
EP  - 154
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_1_a11/
LA  - ru
ID  - DM_2014_26_1_a11
ER  - 
%0 Journal Article
%A P. V. Shnurkov
%A A. V. Ivanov
%T Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption
%J Diskretnaya Matematika
%D 2014
%P 143-154
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_1_a11/
%G ru
%F DM_2014_26_1_a11
P. V. Shnurkov; A. V. Ivanov. Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption. Diskretnaya Matematika, Tome 26 (2014) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/DM_2014_26_1_a11/

[1] Shnurkov P. V., Melnikov R. V., “Optimalnoe upravlenie zapasom nepreryvnogo produkta v modeli regeneratsii”, Obozr. prikl. i promyshl. matem., 3 (2006), 434–452 | Zbl

[2] Shnurkov P. V., Melnikov R. V., “Issledovanie problemy upravleniya zapasom nepreryvnogo produkta pri determinirovannoi zaderzhke postavki”, Avtomatika i telemekhanika, 2008, no. 10, 93–113 | MR | Zbl

[3] Kashtanov V. A., “Ob odnom klasse optimalnykh diskretnykh upravlenii polumarkovskim protsessom”, Nekotorye teor. i prikl. voprosy teorii veroyatnostei, Trudy MIEM, 44, 1975, 67–76

[4] B. V. Gnedenko (red.), Voprosy matematicheskoi teorii nadezhnosti, Izd-vo Radio i svyaz, Moskva, 1983 | MR

[5] Porteus E. L., Foundations of Stochastic Inventory Theory, Stanford University Press, 2002

[6] Vega-Amaya O., Luque-Vasquez F., “Sample-path average cost optimality for semi-Markov control processes on Borel spaces: unbounded costs and mean holding times”, Applicationes Mathematicae, 27:3 (2000), 343–367 | MR | Zbl

[7] Luque-Vasquez F., Hernandez-Lerma O., “Semi-Markov control models with average costs”, Applicationes Mathematicae, 26:3 (1999), 315–331 | MR | Zbl

[8] Klabjan D., Adelman D., “Existence of optimal policies for semi-Markov decision processes using duality for infinite linear programming”, SIAM J. Control and Optimiz., 44:6 (2006), 2104–2122 | DOI | MR | Zbl

[9] Demchenko S. S., Knopov P. S., Chornei R. K., “Optimalnye strategii dlya polumarkovskoi sistemy zapasov”, Kibernetika i sistemnyi analiz, 2002, no. 1, 146–160 | MR | Zbl

[10] Lototskii V. A., Mandel A. S., Modeli i metody upravleniya zapasami, Nauka, Moskva, 1991 | MR

[11] Ryzhikov Yu. I., Teoriya ocheredei i upravlenie zapasami, Piter, Sankt-Peterburg, 2001

[12] Dzhevell V., “Upravlyaemye polumarkovskie protsessy”, Kiberneticheskii sbornik. Novaya seriya, 4, Mir, Moskva, 1967, 97–134

[13] Khalmosh P., Teoriya mery, Izdatelstvo inostrannoi literatury, Moskva, 1953 | MR