On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6
Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 54-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_4_a5,
     author = {M. V. Nikolaev and D. V. Matyukhin},
     title = {On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6},
     journal = {Diskretnaya Matematika},
     pages = {54--65},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/}
}
TY  - JOUR
AU  - M. V. Nikolaev
AU  - D. V. Matyukhin
TI  - On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 54
EP  - 65
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/
LA  - ru
ID  - DM_2013_25_4_a5
ER  - 
%0 Journal Article
%A M. V. Nikolaev
%A D. V. Matyukhin
%T On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6
%J Diskretnaya Matematika
%D 2013
%P 54-65
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/
%G ru
%F DM_2013_25_4_a5
M. V. Nikolaev; D. V. Matyukhin. On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6. Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 54-65. http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/

[1] Galbraith S. D., Holmes M., “A non-uniform birthday problem with applications to discrete logarithms”, Discrete Applied Mathematics, 160:10–11 (2012), 1547–1560 | DOI | MR | Zbl

[2] Galbraith S. D., Ruprai R. S., “An improvement to the Gaudry–Schost algorithm for multidimensional discrete logarithm problems”, Lect. Notes Comput. Sci., 5921, Springer, 2009, 368–382 | DOI | MR | Zbl

[3] Galbraith S. D., Ruprai R. S., “Using equivalence classes to accelerate solving the discrete logarithm problem in a short interval. Public key cryptography”, Lect. Notes Comput. Sci., 6056, Springer, 2010, 368–383 | DOI | MR | Zbl

[4] Gaudry P., Schost E., “A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm”, Lect. Notes Comput. Sci., 3076, Springer-Verlag, 2004, 208–222 | DOI | MR | Zbl

[5] Liu W., Improved algorithms for the 2-dimensional discrete logarithm problem with equivalence classes, MSc Thesis, Univ. Auckland, 2010

[6] Wiener M. J., Zuccherato R. J., “Faster attacks on elliptic curve cryptosystems”, Lect. Notes Comput. Sci., 1556, 1999, 190–200 | DOI | MR | Zbl