Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_4_a5, author = {M. V. Nikolaev and D. V. Matyukhin}, title = {On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6}, journal = {Diskretnaya Matematika}, pages = {54--65}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/} }
TY - JOUR AU - M. V. Nikolaev AU - D. V. Matyukhin TI - On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6 JO - Diskretnaya Matematika PY - 2013 SP - 54 EP - 65 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/ LA - ru ID - DM_2013_25_4_a5 ER -
%0 Journal Article %A M. V. Nikolaev %A D. V. Matyukhin %T On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6 %J Diskretnaya Matematika %D 2013 %P 54-65 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/ %G ru %F DM_2013_25_4_a5
M. V. Nikolaev; D. V. Matyukhin. On the complexity of two-dimensional discrete logarithm problem in a~finite cyclic group with effective automorphism of order~6. Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 54-65. http://geodesic.mathdoc.fr/item/DM_2013_25_4_a5/
[1] Galbraith S. D., Holmes M., “A non-uniform birthday problem with applications to discrete logarithms”, Discrete Applied Mathematics, 160:10–11 (2012), 1547–1560 | DOI | MR | Zbl
[2] Galbraith S. D., Ruprai R. S., “An improvement to the Gaudry–Schost algorithm for multidimensional discrete logarithm problems”, Lect. Notes Comput. Sci., 5921, Springer, 2009, 368–382 | DOI | MR | Zbl
[3] Galbraith S. D., Ruprai R. S., “Using equivalence classes to accelerate solving the discrete logarithm problem in a short interval. Public key cryptography”, Lect. Notes Comput. Sci., 6056, Springer, 2010, 368–383 | DOI | MR | Zbl
[4] Gaudry P., Schost E., “A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm”, Lect. Notes Comput. Sci., 3076, Springer-Verlag, 2004, 208–222 | DOI | MR | Zbl
[5] Liu W., Improved algorithms for the 2-dimensional discrete logarithm problem with equivalence classes, MSc Thesis, Univ. Auckland, 2010
[6] Wiener M. J., Zuccherato R. J., “Faster attacks on elliptic curve cryptosystems”, Lect. Notes Comput. Sci., 1556, 1999, 190–200 | DOI | MR | Zbl