Traveling salesman polytopes and cut polytopes. Affine reducibility
Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_2_a3,
     author = {A. N. Maksimenko},
     title = {Traveling salesman polytopes and cut polytopes. {Affine} reducibility},
     journal = {Diskretnaya Matematika},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/}
}
TY  - JOUR
AU  - A. N. Maksimenko
TI  - Traveling salesman polytopes and cut polytopes. Affine reducibility
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 31
EP  - 38
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/
LA  - ru
ID  - DM_2013_25_2_a3
ER  - 
%0 Journal Article
%A A. N. Maksimenko
%T Traveling salesman polytopes and cut polytopes. Affine reducibility
%J Diskretnaya Matematika
%D 2013
%P 31-38
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/
%G ru
%F DM_2013_25_2_a3
A. N. Maksimenko. Traveling salesman polytopes and cut polytopes. Affine reducibility. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 31-38. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/

[1] Applegate D. L., Bixby R. E., Chvatal V., Cook W. J., The Traveling Salesman Problem: A Computational Study, Princeton University Press, 2006 | MR | Zbl

[2] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, Moskva, 2001

[3] Bondarenko V. A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost v kombinatornoi optimizatsii, LKI, Moskva, 2008

[4] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR

[5] Junger M., Reinelt G., Rinaldi G., “The Traveling Salesman Problem”, Handbooks in Operations Research and Management Science, 7, Elsevier, Amsterdam, 1995, 225–330 | DOI | MR

[6] Bondarenko V. A., Poliedralnye grafy i slozhnost v kombinatornoi optimizatsii, YarGU, Yaroslavl, 1995

[7] Padberg M. W., Rao M. R., “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Prog., 7:1 (1974), 32–45 | DOI | MR | Zbl

[8] Bondarenko V. A., “Nepolinomialnaya nizhnyaya otsenka slozhnosti zadachi kommivoyazhera v odnom klasse algoritmov”, Avtomatika i telemekhanika, 1983, no. 9, 45–50 | MR | Zbl

[9] Papadimitriou C. H., “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Prog., 14:1 (1978), 312–324 | DOI | MR | Zbl