Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_2_a3, author = {A. N. Maksimenko}, title = {Traveling salesman polytopes and cut polytopes. {Affine} reducibility}, journal = {Diskretnaya Matematika}, pages = {31--38}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/} }
A. N. Maksimenko. Traveling salesman polytopes and cut polytopes. Affine reducibility. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 31-38. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a3/
[1] Applegate D. L., Bixby R. E., Chvatal V., Cook W. J., The Traveling Salesman Problem: A Computational Study, Princeton University Press, 2006 | MR | Zbl
[2] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, Moskva, 2001
[3] Bondarenko V. A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost v kombinatornoi optimizatsii, LKI, Moskva, 2008
[4] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR
[5] Junger M., Reinelt G., Rinaldi G., “The Traveling Salesman Problem”, Handbooks in Operations Research and Management Science, 7, Elsevier, Amsterdam, 1995, 225–330 | DOI | MR
[6] Bondarenko V. A., Poliedralnye grafy i slozhnost v kombinatornoi optimizatsii, YarGU, Yaroslavl, 1995
[7] Padberg M. W., Rao M. R., “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Prog., 7:1 (1974), 32–45 | DOI | MR | Zbl
[8] Bondarenko V. A., “Nepolinomialnaya nizhnyaya otsenka slozhnosti zadachi kommivoyazhera v odnom klasse algoritmov”, Avtomatika i telemekhanika, 1983, no. 9, 45–50 | MR | Zbl
[9] Papadimitriou C. H., “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Prog., 14:1 (1978), 312–324 | DOI | MR | Zbl