A criterion for the automata realizable functions to be boundedly deterministic
Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 121-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_2_a11,
     author = {T. I. Smyshlyaeva},
     title = {A criterion for the automata realizable functions to be boundedly deterministic},
     journal = {Diskretnaya Matematika},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/}
}
TY  - JOUR
AU  - T. I. Smyshlyaeva
TI  - A criterion for the automata realizable functions to be boundedly deterministic
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 121
EP  - 134
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/
LA  - ru
ID  - DM_2013_25_2_a11
ER  - 
%0 Journal Article
%A T. I. Smyshlyaeva
%T A criterion for the automata realizable functions to be boundedly deterministic
%J Diskretnaya Matematika
%D 2013
%P 121-134
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/
%G ru
%F DM_2013_25_2_a11
T. I. Smyshlyaeva. A criterion for the automata realizable functions to be boundedly deterministic. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 121-134. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/

[1] Anashin V., Khrennikov A., Applied Algebraic Dynamics, Walter de Gruyter, Berlin–New York, 2009 | MR | Zbl

[2] Anashin V., “Automata finiteness criterion in terms of van der Put series of automata functions”, $P$-Adic Numbers, Ultrametric Analysis, and Applications, 4:2, February (2012), 151–160 | DOI | MR | Zbl

[3] Anashin V., “The Non-Archimedean Theory of Discrete Systems”, Mathematics in Computer Science, 6:4, December (2012), 375–393 | DOI | MR | Zbl

[4] Allouchie J.-P., Schallit J., Automatic Sequences, Cambrige University Press, 2003 | MR

[5] Mahler K., P-adic numbers and their functions, 2nd edition, Cambridge Univ. Press, 1981 | MR | Zbl

[6] Vuillemin J., “Digital Algebra and Circuits”, Verification: Theory and Practice, Lecture Notes in Comput. Sci., 2772, Springer, 2003, 733–746 | MR | Zbl

[7] Vuillemin J., “Finite Digital Synchronous Circuits are characterized by 2-Algebraic Truth Tables”, Advances in Computing Science, ASIAN–2000, Lect. Notes in Comput. Sci., 1961, 2000, 1–12 | DOI | Zbl

[8] Lunts A. G., “$p$-adicheskii apparat teorii konechnykh avtomatov”, Problemy kibernetiki, 14, 1965, 17–30

[9] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, 1986 | MR