Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_2_a11, author = {T. I. Smyshlyaeva}, title = {A criterion for the automata realizable functions to be boundedly deterministic}, journal = {Diskretnaya Matematika}, pages = {121--134}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/} }
T. I. Smyshlyaeva. A criterion for the automata realizable functions to be boundedly deterministic. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 121-134. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a11/
[1] Anashin V., Khrennikov A., Applied Algebraic Dynamics, Walter de Gruyter, Berlin–New York, 2009 | MR | Zbl
[2] Anashin V., “Automata finiteness criterion in terms of van der Put series of automata functions”, $P$-Adic Numbers, Ultrametric Analysis, and Applications, 4:2, February (2012), 151–160 | DOI | MR | Zbl
[3] Anashin V., “The Non-Archimedean Theory of Discrete Systems”, Mathematics in Computer Science, 6:4, December (2012), 375–393 | DOI | MR | Zbl
[4] Allouchie J.-P., Schallit J., Automatic Sequences, Cambrige University Press, 2003 | MR
[5] Mahler K., P-adic numbers and their functions, 2nd edition, Cambridge Univ. Press, 1981 | MR | Zbl
[6] Vuillemin J., “Digital Algebra and Circuits”, Verification: Theory and Practice, Lecture Notes in Comput. Sci., 2772, Springer, 2003, 733–746 | MR | Zbl
[7] Vuillemin J., “Finite Digital Synchronous Circuits are characterized by 2-Algebraic Truth Tables”, Advances in Computing Science, ASIAN–2000, Lect. Notes in Comput. Sci., 1961, 2000, 1–12 | DOI | Zbl
[8] Lunts A. G., “$p$-adicheskii apparat teorii konechnykh avtomatov”, Problemy kibernetiki, 14, 1965, 17–30
[9] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, 1986 | MR