Extremal sets of graphs in the problem of demarcation in the family of hereditary closed classes of graphs
Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 91-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_4_a7,
     author = {D. S. Malyshev},
     title = {Extremal sets of graphs in the problem of demarcation in the family of hereditary closed classes of graphs},
     journal = {Diskretnaya Matematika},
     pages = {91--103},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_4_a7/}
}
TY  - JOUR
AU  - D. S. Malyshev
TI  - Extremal sets of graphs in the problem of demarcation in the family of hereditary closed classes of graphs
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 91
EP  - 103
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_4_a7/
LA  - ru
ID  - DM_2012_24_4_a7
ER  - 
%0 Journal Article
%A D. S. Malyshev
%T Extremal sets of graphs in the problem of demarcation in the family of hereditary closed classes of graphs
%J Diskretnaya Matematika
%D 2012
%P 91-103
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_4_a7/
%G ru
%F DM_2012_24_4_a7
D. S. Malyshev. Extremal sets of graphs in the problem of demarcation in the family of hereditary closed classes of graphs. Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 91-103. http://geodesic.mathdoc.fr/item/DM_2012_24_4_a7/

[1] Malyshev D. S., “O minimalnykh slozhnykh klassakh grafov”, Diskretnyi analiz i issledovanie operatsii, 16:6 (2009), 43–51 | MR | Zbl

[2] Malyshev D. S., Issledovanie granits effektivnoi razreshimosti v semeistve nasledstvennykh klassov grafov, Diss. na soiskanie uch. stepeni kand. fiz.-mat. nauk, 01.01.09 – Diskretnaya matematika i matematicheskaya kibernetika, Nizhnii Novgorod, 2009

[3] Malyshev D. S., “Posledovatelnye minimumy reshetki nasledstvennykh klassov grafov dlya zadachi o rebernom spiskovom ranzhirovanii”, Vestnik Nizhegorodskogo univ., 2010, no. 4, 143–146

[4] Malyshev D. S., “Minimalnye slozhnye klassy grafov dlya zadachi o rebernom spiskovom ranzhirovanii”, Diskretnyi analiz i issledovanie operatsii, 18:1 (2011), 70–76 | MR | Zbl

[5] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | DOI | MR

[6] Alekseev V. E., Boliac R., Korobitsyn D. V., Lozin V. V., “$NP$-hard graph problems and boundary classes of graphs”, Theoret. Comput. Sci., 389 (2007), 219–236 | DOI | MR | Zbl

[7] Alekseev V. E., Korobitsyn D. V., Lozin V. V., “Boundary classes of graphs for the dominating set problem”, Discrete Mathematics, 285 (2004), 1–6 | DOI | MR | Zbl

[8] Dickson L. E., “Finiteness of the odd perfect and primitive abundant numbers with $n$ distinct prime factors”, Amer. J. Math., 35 (1913), 413–422 | DOI | MR | Zbl

[9] Kaminski M., New algorithmic and hardness results on graph partitioning problems, PhD Thesis, Rutgers Center for Operations Research, Rutgers Univ., New Jersey, 2007

[10] Lozin V. V., “Boundary classes of planar graphs”, Combinatorics, Probability, and Computing, 17 (2008), 287–295 | MR | Zbl

[11] Millanic M., Algorithmic developments and complexity results for finding maximum and exact independent sets in graphs, PhD Thesis, Rutgers Center for Operations Research, Rutgers Univ., New Jersey, 2007

[12] Perles M., “On Dilworth's theorem in the infinite case”, Israel J. Math., 1 (1963), 108–109 | DOI | MR | Zbl