Lawvere intervals and the M\"obius function of a~M\"obius category
Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_4_a3,
     author = {E. D. Schwab},
     title = {Lawvere intervals and the {M\"obius} function of {a~M\"obius} category},
     journal = {Diskretnaya Matematika},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_4_a3/}
}
TY  - JOUR
AU  - E. D. Schwab
TI  - Lawvere intervals and the M\"obius function of a~M\"obius category
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 47
EP  - 55
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_4_a3/
LA  - ru
ID  - DM_2012_24_4_a3
ER  - 
%0 Journal Article
%A E. D. Schwab
%T Lawvere intervals and the M\"obius function of a~M\"obius category
%J Diskretnaya Matematika
%D 2012
%P 47-55
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_4_a3/
%G ru
%F DM_2012_24_4_a3
E. D. Schwab. Lawvere intervals and the M\"obius function of a~M\"obius category. Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 47-55. http://geodesic.mathdoc.fr/item/DM_2012_24_4_a3/

[1] Content M., Lemay F., Leroux P., “Catégories de Möbius et fonctorialités: un cadre général pour l'inversion de Möbius”, J. Comb. Theory. Ser. A, 28:2 (1980), 169–190 | DOI | MR | Zbl

[2] Lawvere F. W., Menni M., “The Hopf algebra of Möbius intervals”, Theory and Appl. of Categories, 24:10 (2010), 221–265 | MR | Zbl

[3] Leinster T., “The Euler characteristic of a category”, Doc. Math., 13 (2008), 21–49 | MR | Zbl

[4] Leroux P., “Les categories de Möbius”, Cahiers Topologie Geom. Differentielle, 16 (1975), 280–282

[5] Leroux P., “The isomorphism problem for incidence algebras of Möbius categories”, Ill. J. Math., 26 (1982), 52–61 | MR | Zbl

[6] Leroux P., “Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers”, J. Comb. Theory. Ser. A, 54 (1990), 64–84 | DOI | MR | Zbl

[7] Rota G.-C., “On the foundations of combinatorial theory. Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie, 2 (1964), 340–368 | DOI | MR | Zbl

[8] Schwab E. D., “Möbius categories as reduced standard division categories of combinatorial inverse monoids”, Semigroup Forum, 69 (2004), 30–40 | DOI | MR | Zbl

[9] Schwab E. D., “The Möbius category of some combinatorial inverse semigroups”, Semigroup Forum, 69 (2004), 41–50 | DOI | MR | Zbl

[10] Schwab E. D., “On incidence algebras of combinatorial inverse monoids”, Comm. Algebra, 38 (2010), 1779–1789 | DOI | MR | Zbl

[11] Stanley R. P., Enumerative combinatorics, v. I, Wadsworth Brooks, Monterey, Calif., 1986 | Zbl