Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_4_a10, author = {I. K. Dassios}, title = {On solutions and algebraic duality of generalised linear discrete time systems}, journal = {Diskretnaya Matematika}, pages = {131--146}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_4_a10/} }
I. K. Dassios. On solutions and algebraic duality of generalised linear discrete time systems. Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 131-146. http://geodesic.mathdoc.fr/item/DM_2012_24_4_a10/
[1] Campbell S. L., Singular systems of differential equations, v. 1, Pitman, San Francisco, 1980 ; v. 2, 1982 | MR | Zbl | MR | Zbl
[2] Sandefur J. T., Discrete dynamical systems. Theory and applications, Clarendon Press, Oxford, 1990 | MR | Zbl
[3] Steward G. W., Sun J. G., Matrix perturbation theory, Oxford University Press, Oxford, 1990 | MR
[4] Kalogeropoulos G. I., Matrix pencils and linear systems, PhD Thesis, City University, London, 1985
[5] Vizireanu D. N., “A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems”, Measurement, 45:5 (2012), 1331–1333 | DOI
[6] Vizireanu D. N., Halunga S. V., “Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation”, J. Instrumentation, 7:4 (2012), P04001 | DOI
[7] Dai L., Singular control systems, Springer, Berlin, 1989 | MR
[8] Gantmakher F. R., Teoriya matrits, Nauka, Moskva, 1967 | MR
[9] Gohberg I., Lancaster P., Rodman L., Matrix polynomials, Academic Press, New York, 1983 | MR
[10] Klamka J., “Controllability of dynamical systems”, Matematyka Stosowana, 50:9 (2008), 57–75 | MR
[11] Klamka J., “Controllability of nonlinear discrete systems”, Int. J. Appl. Math. Comput. Sci., 12:2 (2002), 173–180 | MR | Zbl
[12] Klamka J., Controllability of dynamical systems, Kluwer, Dordrecht, 1991 | MR | Zbl
[13] Dassios I. K., “Solutions of higher-order homogeneous linear matrix differential equations for consistent and non-consistent initial conditions: regular case”, ISRN Mathematical Analysis, 2011 (2011), Article ID 183795 | DOI | MR | Zbl
[14] Dassios I. K., “On a boundary value problem of a class of generalized linear discrete-time systems”, Advances in Difference Equations, 2011, November (2011), 51 | DOI | MR
[15] Dassios I. K., “Perturbation and robust stability of autonomous singular linear matrix difference equations”, Appl. Math. Comput., 218 (2012), 6912–6920 | DOI | MR | Zbl
[16] Mitrouli M., Kalogeropoulos G., “Generalised linear discrete-time systems and matrix pencils algebraic duality”, J. Inst. Math. Comput. Sci. Math. Ser., 10:2 (1997), 81–90 | MR | Zbl
[17] Mitrouli M., Kalogeropoulos G., “A matrix pencil approach computing the elementary divisors of a matrix: Numerical aspects and applications”, Korean J. Comput. Appl. Math., 5:3 (1998), 627–644 | MR | Zbl
[18] Mitrouli M., Kalogeropoulos G., “A compound matrix algorithm for the computation of the Smith form of a polynomial matrix”, Numer. Algorithms, 7 (1994), 145–159 | DOI | MR | Zbl
[19] Lewis F. L., “A survey of linear singular systems”, Circuits Syst. Signal Process., 5 (1986), 3–36 | DOI | MR | Zbl
[20] Rugh W. J., Linear system theory, Prentice Hall, London, 1996 | MR | Zbl