Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_3_a13, author = {R. N. Boyarinov}, title = {On the number of {Gram's} intervals containing the ordinates of successive zeros of the {Riemann} zeta function}, journal = {Diskretnaya Matematika}, pages = {152--159}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/} }
TY - JOUR AU - R. N. Boyarinov TI - On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function JO - Diskretnaya Matematika PY - 2012 SP - 152 EP - 159 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/ LA - ru ID - DM_2012_24_3_a13 ER -
R. N. Boyarinov. On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function. Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 152-159. http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/
[1] Gram J.-P., “Note sur les zéros de la fonction $\zeta(s)$ de Riemann”, Acta Math., 27:1 (1903), 289–304 | DOI | MR | Zbl
[2] Hutchinson J. I., “On the roots of the Riemann zeta function”, Trans. Amer. Math. Soc., 27:1 (1925), 49–60 | DOI | MR | Zbl
[3] Titchmarsh E. C., “On van der Corput's method and the zeta-function. IV”, Quart. J. Math. Oxf. Ser., 5 (1934), 98–105 | DOI | Zbl
[4] Selberg A., “The zeta function and the Riemann hypothesis”, Dixième Congrès Math. (Skandinaves, 1946), v. 10, Gjellerups Forlag, Copenhagen, 1947, 187–200 | MR
[5] Mózer J., “On Gram's law in the theory of the Riemann zeta-function”, Acta Arithmetica, 32 (1977), 107–113 | MR
[6] Korolev M. A., “Zakon Grama i gipoteza Selberga o raspredelenii nulei dzeta-funktsii Rimana”, Izvestiya RAN. Ser. matem., 74:4 (2010), 83–118 | DOI | MR | Zbl
[7] Karatsuba A. A., Korolev M. A., “Argument dzeta-funktsii Rimana”, Uspekhi matem. nauk, 60:3(363) (2005), 41–96 | DOI | MR | Zbl
[8] Karatsuba A. A., Korolev M. A., “Povedenie argumenta dzeta-funktsii Rimana na kriticheskoi pryamoi”, Uspekhi matem. nauk, 61:3(369) (2006), 3–92 | DOI | MR | Zbl