On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function
Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 152-159

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_3_a13,
     author = {R. N. Boyarinov},
     title = {On the number of {Gram's} intervals containing the ordinates of successive zeros of the {Riemann} zeta function},
     journal = {Diskretnaya Matematika},
     pages = {152--159},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/}
}
TY  - JOUR
AU  - R. N. Boyarinov
TI  - On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 152
EP  - 159
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/
LA  - ru
ID  - DM_2012_24_3_a13
ER  - 
%0 Journal Article
%A R. N. Boyarinov
%T On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function
%J Diskretnaya Matematika
%D 2012
%P 152-159
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/
%G ru
%F DM_2012_24_3_a13
R. N. Boyarinov. On the number of Gram's intervals containing the ordinates of successive zeros of the Riemann zeta function. Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 152-159. http://geodesic.mathdoc.fr/item/DM_2012_24_3_a13/