Extremal problems for panchromatic colourings of uniform hypergraphs
Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 104-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_2_a9,
     author = {A. P. Rozovskaya and D. A. Shabanov},
     title = {Extremal problems for panchromatic colourings of uniform hypergraphs},
     journal = {Diskretnaya Matematika},
     pages = {104--122},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_2_a9/}
}
TY  - JOUR
AU  - A. P. Rozovskaya
AU  - D. A. Shabanov
TI  - Extremal problems for panchromatic colourings of uniform hypergraphs
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 104
EP  - 122
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_2_a9/
LA  - ru
ID  - DM_2012_24_2_a9
ER  - 
%0 Journal Article
%A A. P. Rozovskaya
%A D. A. Shabanov
%T Extremal problems for panchromatic colourings of uniform hypergraphs
%J Diskretnaya Matematika
%D 2012
%P 104-122
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_2_a9/
%G ru
%F DM_2012_24_2_a9
A. P. Rozovskaya; D. A. Shabanov. Extremal problems for panchromatic colourings of uniform hypergraphs. Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 104-122. http://geodesic.mathdoc.fr/item/DM_2012_24_2_a9/

[1] Kostochka A. V., “On a theorem by Erdős, Rubin and Taylor on choosability of complete bipartite graphs”, J. Comb., 9:1 (2002), #N9, 4 | MR | Zbl

[2] Kostochka A. V., “Color-critical graphs and hypergraphs with few edges: a survey”, More Sets, Graphs and Numbers, eds. Győri E., Katona G. O. H., Lovász L., Springer, Berlin, 2006, 175–198 | DOI | MR

[3] Erdős P., Hajnal A., “On a property of families of sets”, Acta Math. Acad. Sci. Hungary, 12:1–2 (1961), 87–123 | MR | Zbl

[4] Erdős P., “On a combinatorial problem, II”, Acta Math. Acad. Sci. Hungary, 15:3–4 (1964), 445–447 | MR | Zbl

[5] Radhakrishnan J., Srinivasan A., “Improved bounds and algorithms for hypergraph two-coloring”, Random Structures and Algorithms, 16:1 (2000), 4–32 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Erdős P., Lovász L., “Problems and results on 3-chromatic hypergraphs and some related questions”, Colloq. Math. Soc. Janos Bolyai, 10 (1973), 609–627 | MR

[7] Shabanov D. A., “Ob odnoi kombinatornoi zadache Erdësha”, Dokl. Akad. nauk, 396:2 (2004), 166–169 | MR | Zbl

[8] Shabanov D. A., “Ekstremalnye zadachi dlya raskrasok ravnomernykh gipergrafov”, Izv. RAN. Ser. matem., 71:6 (2007), 183–222 | DOI | MR | Zbl

[9] Shabanov D. A., “O suschestvovanii polnotsvetnykh raskrasok dlya ravnomernykh gipergrafov”, Matem. sb., 201:4 (2010), 137–160 | DOI | MR | Zbl

[10] Vizing V. G., “Raskraska vershin grafa v predpisannye tsveta”, Diskret. analiz, 29, 1976, 3–10 | MR | Zbl

[11] Erdős P., Rubin A. L., Taylor H., “Choosability in graphs”, Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, 26, 1980, 125–157 | MR

[12] Alon N., “Choice number of graphs: a probabilistic approach”, Combinatorics, Probability and Computing, 1 (1992), 107–114 | DOI | MR | Zbl

[13] Shabanov D. A., “On a generalization of Rubin's theorem”, J. Graph Theory, 67:3 (2011), 226–234 | DOI | MR | Zbl

[14] Gécseg F., Imreh B., Pluhár A., “On the existence of finite isomorphic complete systems of automata”, J. Automata, Languages and Combinatorics, 3:2 (1998), 77–84 | MR | Zbl

[15] Alon N., Spencer J. H., The probabilistic method, Wiley, New York, 1992 | MR

[16] Erdős P., Rényi A., “On the evolution of random graphs”, Magyar Tud. Akad. Mat. Kutató Int. Kőzl., 5:1–2 (1960), 17–61 | MR | Zbl

[17] Bollobás B., Random graphs, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[18] Janson S., Luczak T., Ruciński A., Random graphs, Wiley, New York, 2000 | MR

[19] Karoński M., Luczak T., “Random hypergraphs”, Bolyai Soc. Math. Stud., 2 (1996), 283–293 | MR | Zbl