Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_1_a6, author = {M. E. Zhukovskii}, title = {Estimation of the number of maximal extensions in a~random graph}, journal = {Diskretnaya Matematika}, pages = {79--107}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_1_a6/} }
M. E. Zhukovskii. Estimation of the number of maximal extensions in a~random graph. Diskretnaya Matematika, Tome 24 (2012) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/DM_2012_24_1_a6/
[1] Spencer J. H., “Counting extensions”, J. Combinatorial Theory Ser. A, 55 (1990), 247–255 | DOI | MR | Zbl
[2] Alon N., Spencer J., Probabilistic method, Wiley, New York, 1992 | MR
[3] Shelah S., Spencer J. H., “Zero–one laws for sparse random graphs”, J. American Math. Soc., 1 (1988), 97–115 | DOI | MR | Zbl
[4] McArthur M., “The asymptotic behavior of $L_{\infty,\omega}^k$ on sparse random graphs”, DIMACS, 33 (1997), 53–63 | MR | Zbl
[5] Janson S., Luczak T., Rucinski A., Random Graphs, Wiley, New York, 2000 | MR
[6] Zhukovskii M. E., “Oslablennyi zakon nulya ili edinitsy dlya sluchainykh distantsionnykh grafov”, Doklady RAN, 430:3 (2010), 314–317 | MR | Zbl
[7] Uspenskii V. A., Vereschagin N. K., Plisko V. E., Vvodnyi kurs matematicheskoi logiki, Fizmatlit, Moskva, 1997
[8] Vereschagin N. K., Shen A., Yazyki i ischisleniya, MTsNMO, Moskva, 2000
[9] Diestel R., Graph theory, Springer, Berlin, 2000 | MR | Zbl
[10] Harary F., Graph theory, Addison–Wesley, Reading, Mass., 1969 | MR | Zbl
[11] Erdős P., Rényi A., “On the evolution of random graphs”, Publ. Math. Inst. Hung. Acad. Sci., 5 (1960), 17–61 | MR | Zbl
[12] Bollobás B., Random graphs, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[13] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2004