Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2011_23_4_a9, author = {V. L. Kurakin and V. V. Vyazovich}, title = {An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring}, journal = {Diskretnaya Matematika}, pages = {134--157}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/} }
TY - JOUR AU - V. L. Kurakin AU - V. V. Vyazovich TI - An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring JO - Diskretnaya Matematika PY - 2011 SP - 134 EP - 157 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/ LA - ru ID - DM_2011_23_4_a9 ER -
%0 Journal Article %A V. L. Kurakin %A V. V. Vyazovich %T An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring %J Diskretnaya Matematika %D 2011 %P 134-157 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/ %G ru %F DM_2011_23_4_a9
V. L. Kurakin; V. V. Vyazovich. An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring. Diskretnaya Matematika, Tome 23 (2011) no. 4, pp. 134-157. http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/
[1] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, Moskva, 1971 | MR
[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR | Zbl
[3] Kurakin V. L., “Algoritm Berlekempa–Messi nad kommutativnymi artinovymi koltsami glavnykh idealov”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999), 1061–1101 | MR | Zbl
[4] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi kommutativnymi koltsami”, Problemy peredachi informatsii, 35:2 (1999), 38–50 | MR | Zbl
[5] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi koltsami, modulyami i bimodulyami”, Diskretnaya matematika, 10:4 (1998), 3–34 | MR | Zbl
[6] Kurakin V. L., “Construction of the annihilator of a linear recurring sequence over finite module with the help of the Berlekamp–Massey algorithm”, Proc. FPSAC' 00, eds. Krob D. et al., Springer, Berlin, 2000, 476–483 | MR | Zbl
[7] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76 (1995), 2793–2915 | DOI | MR | Zbl
[8] Massey J. L., “Shift-register synthesis and BCH decoding”, IEEE Trans. Inform. Theory, 15 (1969), 122–127 | DOI | MR | Zbl
[9] Reeds J. A., Sloane N. J. A., “Shift-register synthesis (modulo $m$)”, SIAM J. Comput., 14 (1985), 505–513 | DOI | MR | Zbl
[10] Sakata S., “On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals”, IEEE Trans. Inform. Theory, 27 (1981), 556–565 | DOI | MR | Zbl
[11] Sakata S., “Finding a minimal set of linear recurring relations capable of generating a given finite two dimensional array”, J. Symbolic Comput., 5 (1988), 321–337 | DOI | MR | Zbl
[12] Sakata S., “Synthesis of two-dimensional linear feedback shift registers and bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl
[13] Sakata S., “$N$-dimensional Berlekamp–Massey algorithm for multiple arrays and construction of multivariate polynomials with preassigned zeros”, Lect. Notes Comput. Sci., 357, 1989, 356–376 | MR | Zbl
[14] Sakata S., “Extension of the Berlekamp–Massey algorithm to $N$ dimensions”, Inform. Comput., 84 (1990), 207–239 | DOI | MR | Zbl
[15] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $n$D array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl
[16] Sakata S., “Finding a minimal polynomial vector set of a vector of $n$D arrays”, Lect. Notes Comput. Sci., 539, 1991, 414–425 | MR | Zbl
[17] Sakata S., “Two-dimensional shift register synthesis and Gröbner bases for polynomial ideals over an integer residue ring”, Discrete Appl. Math., 33 (1991), 191–203 | DOI | MR | Zbl
[18] Sakata S., “The BM algorithm and the BMS algorithm”, Codes, Curves, and Signals. Common Threads in Communications, ed. Vardy A., Kluwer, Boston, 1998, 39–52 | MR | Zbl