An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring
Diskretnaya Matematika, Tome 23 (2011) no. 4, pp. 134-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2011_23_4_a9,
     author = {V. L. Kurakin and V. V. Vyazovich},
     title = {An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring},
     journal = {Diskretnaya Matematika},
     pages = {134--157},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/}
}
TY  - JOUR
AU  - V. L. Kurakin
AU  - V. V. Vyazovich
TI  - An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 134
EP  - 157
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/
LA  - ru
ID  - DM_2011_23_4_a9
ER  - 
%0 Journal Article
%A V. L. Kurakin
%A V. V. Vyazovich
%T An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring
%J Diskretnaya Matematika
%D 2011
%P 134-157
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/
%G ru
%F DM_2011_23_4_a9
V. L. Kurakin; V. V. Vyazovich. An algorithm for construction of the annihilator of a~polylinear recurring sequence over a~finite commutative ring. Diskretnaya Matematika, Tome 23 (2011) no. 4, pp. 134-157. http://geodesic.mathdoc.fr/item/DM_2011_23_4_a9/

[1] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, Moskva, 1971 | MR

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR | Zbl

[3] Kurakin V. L., “Algoritm Berlekempa–Messi nad kommutativnymi artinovymi koltsami glavnykh idealov”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999), 1061–1101 | MR | Zbl

[4] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi kommutativnymi koltsami”, Problemy peredachi informatsii, 35:2 (1999), 38–50 | MR | Zbl

[5] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi koltsami, modulyami i bimodulyami”, Diskretnaya matematika, 10:4 (1998), 3–34 | MR | Zbl

[6] Kurakin V. L., “Construction of the annihilator of a linear recurring sequence over finite module with the help of the Berlekamp–Massey algorithm”, Proc. FPSAC' 00, eds. Krob D. et al., Springer, Berlin, 2000, 476–483 | MR | Zbl

[7] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76 (1995), 2793–2915 | DOI | MR | Zbl

[8] Massey J. L., “Shift-register synthesis and BCH decoding”, IEEE Trans. Inform. Theory, 15 (1969), 122–127 | DOI | MR | Zbl

[9] Reeds J. A., Sloane N. J. A., “Shift-register synthesis (modulo $m$)”, SIAM J. Comput., 14 (1985), 505–513 | DOI | MR | Zbl

[10] Sakata S., “On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals”, IEEE Trans. Inform. Theory, 27 (1981), 556–565 | DOI | MR | Zbl

[11] Sakata S., “Finding a minimal set of linear recurring relations capable of generating a given finite two dimensional array”, J. Symbolic Comput., 5 (1988), 321–337 | DOI | MR | Zbl

[12] Sakata S., “Synthesis of two-dimensional linear feedback shift registers and bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl

[13] Sakata S., “$N$-dimensional Berlekamp–Massey algorithm for multiple arrays and construction of multivariate polynomials with preassigned zeros”, Lect. Notes Comput. Sci., 357, 1989, 356–376 | MR | Zbl

[14] Sakata S., “Extension of the Berlekamp–Massey algorithm to $N$ dimensions”, Inform. Comput., 84 (1990), 207–239 | DOI | MR | Zbl

[15] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $n$D array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl

[16] Sakata S., “Finding a minimal polynomial vector set of a vector of $n$D arrays”, Lect. Notes Comput. Sci., 539, 1991, 414–425 | MR | Zbl

[17] Sakata S., “Two-dimensional shift register synthesis and Gröbner bases for polynomial ideals over an integer residue ring”, Discrete Appl. Math., 33 (1991), 191–203 | DOI | MR | Zbl

[18] Sakata S., “The BM algorithm and the BMS algorithm”, Codes, Curves, and Signals. Common Threads in Communications, ed. Vardy A., Kluwer, Boston, 1998, 39–52 | MR | Zbl