Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2011_23_3_a7, author = {A. A. Tuganbaev}, title = {Rings over which all modules are completely integrally closed}, journal = {Diskretnaya Matematika}, pages = {120--137}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/} }
A. A. Tuganbaev. Rings over which all modules are completely integrally closed. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 120-137. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/
[1] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, Moskva, 1979 | MR
[2] Brungs H. H., Törner G., “Chain rings and prime ideals”, Arch. Math., 27 (1976), 253–260 | DOI | MR | Zbl
[3] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6 (1978), 59–73 | DOI | MR | Zbl
[4] Jeremy L., “Modules et anneaux quasi-continus”, Canadian Math. Bull., 17 (1974), 217–228 | DOI | MR | Zbl
[5] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford, 25 (1974), 51–55 | DOI | MR | Zbl
[6] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | MR | Zbl
[7] Osofsky B. L., Smith P. F., “Cyclic modules whose quotients have all complement submodules direct summands”, J. Algebra, 139 (1991), 342–354 | DOI | MR | Zbl