Rings over which all modules are completely integrally closed
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 120-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the rings over which all modules are completely integrally closed.
@article{DM_2011_23_3_a7,
     author = {A. A. Tuganbaev},
     title = {Rings over which all modules are completely integrally closed},
     journal = {Diskretnaya Matematika},
     pages = {120--137},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which all modules are completely integrally closed
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 120
EP  - 137
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/
LA  - ru
ID  - DM_2011_23_3_a7
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which all modules are completely integrally closed
%J Diskretnaya Matematika
%D 2011
%P 120-137
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/
%G ru
%F DM_2011_23_3_a7
A. A. Tuganbaev. Rings over which all modules are completely integrally closed. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 120-137. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a7/

[1] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, Moskva, 1979 | MR

[2] Brungs H. H., Törner G., “Chain rings and prime ideals”, Arch. Math., 27 (1976), 253–260 | DOI | MR | Zbl

[3] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6 (1978), 59–73 | DOI | MR | Zbl

[4] Jeremy L., “Modules et anneaux quasi-continus”, Canadian Math. Bull., 17 (1974), 217–228 | DOI | MR | Zbl

[5] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford, 25 (1974), 51–55 | DOI | MR | Zbl

[6] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | MR | Zbl

[7] Osofsky B. L., Smith P. F., “Cyclic modules whose quotients have all complement submodules direct summands”, J. Algebra, 139 (1991), 342–354 | DOI | MR | Zbl