An asynchronous double stochastic flow with initiation of superfluous events
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 59-65
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an asynchronous double stochastic flow with initiation of superfluous events (a generalised asynchronous flow), which is a mathematical model of information flows in computer networks, communication systems, etc. We study the stationary mode of the flow. We find the probability density $p(\tau)$ of the length of the interval between events in the flow and the joint probability density $p(\tau_1,\tau_2)$ of the lengths of two neighbouring intervals. We show that the generalised asynchronous flow is a correlated flow in the general case. We find conditions for the flow to become recursive or to degenerate into an elementary one.
@article{DM_2011_23_2_a4,
author = {A. M. Gortsev and L. A. Nezhelskaya},
title = {An asynchronous double stochastic flow with initiation of superfluous events},
journal = {Diskretnaya Matematika},
pages = {59--65},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/}
}
TY - JOUR AU - A. M. Gortsev AU - L. A. Nezhelskaya TI - An asynchronous double stochastic flow with initiation of superfluous events JO - Diskretnaya Matematika PY - 2011 SP - 59 EP - 65 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/ LA - ru ID - DM_2011_23_2_a4 ER -
A. M. Gortsev; L. A. Nezhelskaya. An asynchronous double stochastic flow with initiation of superfluous events. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 59-65. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/