An asynchronous double stochastic flow with initiation of superfluous events
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an asynchronous double stochastic flow with initiation of superfluous events (a generalised asynchronous flow), which is a mathematical model of information flows in computer networks, communication systems, etc. We study the stationary mode of the flow. We find the probability density $p(\tau)$ of the length of the interval between events in the flow and the joint probability density $p(\tau_1,\tau_2)$ of the lengths of two neighbouring intervals. We show that the generalised asynchronous flow is a correlated flow in the general case. We find conditions for the flow to become recursive or to degenerate into an elementary one.
@article{DM_2011_23_2_a4,
     author = {A. M. Gortsev and L. A. Nezhelskaya},
     title = {An asynchronous double stochastic flow with initiation of superfluous events},
     journal = {Diskretnaya Matematika},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/}
}
TY  - JOUR
AU  - A. M. Gortsev
AU  - L. A. Nezhelskaya
TI  - An asynchronous double stochastic flow with initiation of superfluous events
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 59
EP  - 65
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/
LA  - ru
ID  - DM_2011_23_2_a4
ER  - 
%0 Journal Article
%A A. M. Gortsev
%A L. A. Nezhelskaya
%T An asynchronous double stochastic flow with initiation of superfluous events
%J Diskretnaya Matematika
%D 2011
%P 59-65
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/
%G ru
%F DM_2011_23_2_a4
A. M. Gortsev; L. A. Nezhelskaya. An asynchronous double stochastic flow with initiation of superfluous events. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 59-65. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a4/

[1] Basharin G. P., Kokotushkin V. A., Naumov V. A., “O metode ekvivalentnykh zamen rascheta fragmentov setei svyazi”, Izvestiya AN SSSR, ser. Tekhn. kibern., 1979, no. 6, 92–99 | MR | Zbl

[2] Basharin G. P., Kokotushkin V. A., Naumov V. A., “O metode ekvivalentnykh zamen rascheta fragmentov setei svyazi”, Izvestiya AN SSSR, ser. Tekhn. kibern., 1980, no. 1, 55–61 | MR

[3] Neuts M. F., “A versatile Markov point process”, J. Appl. Probab., 16 (1979), 764–779 | DOI | MR

[4] Bushlanov I. V., Gortsev A. M., “Optimalnaya otsenka sostoyanii sinkhronnogo dvazhdy stokhasticheskogo potoka sobytii”, Avtomatika i telemekhanika, 2004, no. 9, 40–51 | MR | Zbl

[5] Vasileva L. A., Gortsev A. M., “Otsenivanie dlitelnosti mertvogo vremeni asinkhronnogo dvazhdy stokhasticheskogo potoka sobytii v usloviyakh ego nepolnoi nablyudaemosti”, Avtomatika i telemekhanika, 2003, no. 12, 69–79 | MR

[6] Gortsev A. M., Nezhelskaya L. A., “Otsenivanie perioda mertvogo vremeni i parametrov polusinkhronnogo dvazhdy stokhasticheskogo potoka sobytii”, Izmeritelnaya tekhnika, 2003, no. 6, 7–13

[7] Lucantoni D. M., Neuts M. F., “Some steady-state distributions for the $MAP/SM/1$ queue”, Comm. Stat., Stochastic Models, 10 (1994), 575–598 | DOI | MR | Zbl

[8] Vasilevskaya T. P., Zavgorodnyaya M. E., Shmyrin I. S., “O sootnoshenii modelei MAP-potoka sobytii i asinkhronnogo, polusinkhronnogo i sinkhronnogo dvazhdy stokhasticheskikh potokov sobytii”, Vestnik Tomskogo gosudarstvennogo universiteta, 2004, no. 9(11), 138–144

[9] Ivchenko G. I., Kashtanov V. A., Kovalenko I. N., Teoriya massovogo obsluzhivaniya, Vysshaya shkola, Moskva, 1982 | Zbl