The predicate method to construct the Post lattice
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 115-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new way to construct the structure of all closed classes of two-valued logic. In contrast to classical approaches, in this research the functions of two-valued logic are auxiliary objects and the construction starts from the set of predicates.
@article{DM_2011_23_2_a10,
     author = {D. N. Zhuk},
     title = {The predicate method to construct the {Post} lattice},
     journal = {Diskretnaya Matematika},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a10/}
}
TY  - JOUR
AU  - D. N. Zhuk
TI  - The predicate method to construct the Post lattice
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 115
EP  - 128
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a10/
LA  - ru
ID  - DM_2011_23_2_a10
ER  - 
%0 Journal Article
%A D. N. Zhuk
%T The predicate method to construct the Post lattice
%J Diskretnaya Matematika
%D 2011
%P 115-128
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a10/
%G ru
%F DM_2011_23_2_a10
D. N. Zhuk. The predicate method to construct the Post lattice. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a10/

[1] Post E., “Determination of all closed systems of truth tables”, Bull. Amer. Math. Soc., 26 (1920), 437

[2] Post E., Two-valued iterative systems of mathematical logic, Princeton Univ. Press, Princeton, 1941 | MR | Zbl

[3] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, Moskva, 1966 | MR

[4] Ugolnikov A. B., “O zamknutykh klassakh Posta”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1988, no. 7(314), 79–88 | MR

[5] Bondarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta I”, Kibernetika, 1969, no. 3, 1–10; “II”, No 5, 1–9