Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 3-31
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R=GR(q^n,q^n)$ be a Galois ring of cardinality $q^n$ and characteristic $p^n$, $q=p^r$, $p$ be a prime. We call a subset $K\subset R$ a coordinate set if $0\in K$ and for any $a\in R$ there exists a unique $\varkappa(a)\in K$ such that $a\equiv\varkappa(a)\pmod{pR}$. Let $u$ be a linear recurring sequence of maximal period (MP LRS) over a ring $R$. Then any its term $u(i)$ admits a unique representation in the form
$$
u(i)=w_0(i)+pw_1(i)+\dots+p^{n-1}w_{n-1}(i),\qquad w_t(i)\in K,\quad t\in\{0,\dots,n-1\}.
$$
We pose the following conjecture: the sequence $u$ can be uniquely reconstructed from the sequence $w_{n-1}$ for any choice of the coordinate set $K$. It is proved that such a reconstruction is possible under some conditions on $K$. In particular, it is possible for any $K$ if $R=\mathbf Z_{p^n}$ and for any Galois ring $R$ if $K$ is a $p$-adic (Teichmüller) coordinate set.
@article{DM_2011_23_2_a0,
author = {A. S. Kuzmin and A. A. Nechaev},
title = {Reconstruction of a~linear recurrence of maximal period over {a~Galois} ring from its highest coordinate sequence},
journal = {Diskretnaya Matematika},
pages = {3--31},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/}
}
TY - JOUR AU - A. S. Kuzmin AU - A. A. Nechaev TI - Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence JO - Diskretnaya Matematika PY - 2011 SP - 3 EP - 31 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/ LA - ru ID - DM_2011_23_2_a0 ER -
%0 Journal Article %A A. S. Kuzmin %A A. A. Nechaev %T Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence %J Diskretnaya Matematika %D 2011 %P 3-31 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/ %G ru %F DM_2011_23_2_a0
A. S. Kuzmin; A. A. Nechaev. Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 3-31. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/