Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 3-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R=GR(q^n,q^n)$ be a Galois ring of cardinality $q^n$ and characteristic $p^n$, $q=p^r$, $p$ be a prime. We call a subset $K\subset R$ a coordinate set if $0\in K$ and for any $a\in R$ there exists a unique $\varkappa(a)\in K$ such that $a\equiv\varkappa(a)\pmod{pR}$. Let $u$ be a linear recurring sequence of maximal period (MP LRS) over a ring $R$. Then any its term $u(i)$ admits a unique representation in the form $$ u(i)=w_0(i)+pw_1(i)+\dots+p^{n-1}w_{n-1}(i),\qquad w_t(i)\in K,\quad t\in\{0,\dots,n-1\}. $$ We pose the following conjecture: the sequence $u$ can be uniquely reconstructed from the sequence $w_{n-1}$ for any choice of the coordinate set $K$. It is proved that such a reconstruction is possible under some conditions on $K$. In particular, it is possible for any $K$ if $R=\mathbf Z_{p^n}$ and for any Galois ring $R$ if $K$ is a $p$-adic (Teichmüller) coordinate set.
@article{DM_2011_23_2_a0,
     author = {A. S. Kuzmin and A. A. Nechaev},
     title = {Reconstruction of a~linear recurrence of maximal period over {a~Galois} ring from its highest coordinate sequence},
     journal = {Diskretnaya Matematika},
     pages = {3--31},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/}
}
TY  - JOUR
AU  - A. S. Kuzmin
AU  - A. A. Nechaev
TI  - Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 3
EP  - 31
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/
LA  - ru
ID  - DM_2011_23_2_a0
ER  - 
%0 Journal Article
%A A. S. Kuzmin
%A A. A. Nechaev
%T Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence
%J Diskretnaya Matematika
%D 2011
%P 3-31
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/
%G ru
%F DM_2011_23_2_a0
A. S. Kuzmin; A. A. Nechaev. Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 3-31. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/