Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2011_23_2_a0, author = {A. S. Kuzmin and A. A. Nechaev}, title = {Reconstruction of a~linear recurrence of maximal period over {a~Galois} ring from its highest coordinate sequence}, journal = {Diskretnaya Matematika}, pages = {3--31}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/} }
TY - JOUR AU - A. S. Kuzmin AU - A. A. Nechaev TI - Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence JO - Diskretnaya Matematika PY - 2011 SP - 3 EP - 31 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/ LA - ru ID - DM_2011_23_2_a0 ER -
%0 Journal Article %A A. S. Kuzmin %A A. A. Nechaev %T Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence %J Diskretnaya Matematika %D 2011 %P 3-31 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/ %G ru %F DM_2011_23_2_a0
A. S. Kuzmin; A. A. Nechaev. Reconstruction of a~linear recurrence of maximal period over a~Galois ring from its highest coordinate sequence. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 3-31. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a0/
[1] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, Moskva, 1971 | MR
[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moskva, 2003
[3] Kuzmin A. S., Nechaev A. A., “Postroenie pomekhoustoichivykh kodov s ispolzovaniem lineinykh rekurrent nad koltsami Galua”, Uspekhi matematicheskikh nauk, 47:5 (1992), 183–184 | MR | Zbl
[4] Kuzmin A. S., Nechaev A. A., “Linear recurrences over Galois rings”, Trudy 2-i Mezhd. konf. po algebre, Barnaul, 1991
[5] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 3:2 (1995), 169–189 | MR
[6] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR | Zbl
[7] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Svoistva lineinykh i polilineinykh rekurrent nad koltsami Galua”, Trudy po diskretnoi matematike, 2, 1998, 191–222 | MR | Zbl
[8] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Strukturnye analiticheskie i statisticheskie svoistva lineinykh i polilineinykh rekurrent”, Trudy po diskretnoi matematike, 3, 2000, 155–194
[9] Kuzmin A. S., Marshalko G. B., Nechaev A. A., “Vosstanovlenie lineinoi rekurrenty nad primarnym koltsom vychetov po ee uslozhneniyu”, Matematicheskie voprosy kriptografii, 1:2 (2010), 31–56
[10] Nechaev A. A., “Konechnye koltsa glavnykh idealov”, Matematicheskii sb., 91(133):3 (1973), 350–366 | MR | Zbl
[11] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 107–127 | MR | Zbl
[12] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[13] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Uspekhi matematicheskikh nauk, 48:1 (1993), 167–168 | MR | Zbl
[14] Kuzmin A. S., “Nizhnie otsenki rangov koordinatnykh posledovatelnostei lineinykh rekurrentnykh posledovatelnostei nad primarnymi koltsami vychetov”, Uspekhi matematicheskikh nauk, 48:3 (1993), 193–194 | MR | Zbl
[15] Lidl R., Niderraiter G., Konechnye polya, v. 2, Mir, Moskva, 1988 | Zbl
[16] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | MR | Zbl
[17] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi lokalnymi koltsami”, Matematicheskii sb., 184:3 (1993), 21–56 | MR | Zbl
[18] Laxton R. R., Anderson J. A., “Linear recurrences and maximal length sequences”, Math. Gazette, 56 (1972), 299–309 | DOI | MR
[19] Min-Qiang Huang, Zong-Duo Dai, “Projective maps of linear recurring sequences with maximal $p$-adic periods”, Fibonacci Quart., 30:2 (1992), 139–143 | MR
[20] Min-Qiang Huang, Analysis and cryptologic evaluation for primitive sequences over an integer residue ring, PhD Thesis, Graduate School of USTC, Academia Sinica, Beijing, China, 1988
[21] Xuan-Yong Zhu, Wen-Feng Qi, “Uniqueness of the distribution of zeros of primitive level sequences over $\mathbf Z_{p^n}$”, Finite Fields Appl., 11:1 (2005), 30–44 | DOI | MR | Zbl
[22] Xuan-Yong Zhu, Wen-Feng Qi, “Compression mappings on primitive sequences over $\mathbf Z_{p^n}$”, IEEE Trans. Inform. Theory, 50:10 (2004), 2442–2448 | DOI | MR
[23] Xuan-Yong Zhu, Wen-Feng Qi, “Further result of compressing maps on primitive sequences modulo odd prime powers”, IEEE Trans. Inform. Theory, 53:8 (2007), 2985–2990 | DOI | MR
[24] Tian Tian, Wen-Feng Qi, “Injectivity of compressing map on primitive sequences over $\mathbf Z_{p^l}$”, IEEE Trans. Inform. Theory, 53:8 (2007), 2960–2966 | DOI | MR
[25] Zong-Duo Dai, “Binary sequences derived from ML-sequences over rings I: periods and minimal polynomials”, J. Cryptology, 5:4 (1992), 193–207 | MR | Zbl
[26] Weng-Feng Qi, Xuan-Yong Zhu, “Compressing maps on primitive sequences over $\mathbf Z_{2^n}$ and its Galois extension”, Finite Fields Appl., 8:4 (2002), 570–588 | MR
[27] Weng-Feng Qi, Compressing maps on primitive sequences over $\mathbf Z_{2n}$ and analysis of their derivative sequences, PhD Thesis, Zhengzhou Inform. Eng. Univ., Zhengzhou, China, 1997
[28] Weng-Feng Qi, Jun-Hui Yang, Jin-Jun Zhou, “ML-sequences over rings $\mathbf Z_{2^n}$”, Lecture Notes Computer Sci., 1514, 1998, 315–325