A case of insolubility of the problem of equivalence of programs
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 72-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebraic models of sequential programs where the semantics of operators is defined on the base of a semigroup. In the paper, for the first time an example is constructed of a solvable semigroup with indecomposable neutral element for which the stopping problem for a Turing machine reduces to the problem of equivalence of programs over a given semigroup. All known examples of models of insoluble problem of equivalence of programs were based on groups. Thus, in the paper we succeeded in refining the boundary between soluble and insoluble cases of the problem of equivalence of programs in algebraic models. The obtained result supports also the importance of some sufficient conditions of solubility of the problem of equivalence of programs.
@article{DM_2011_23_1_a5,
     author = {V. L. Shcherbina},
     title = {A case of insolubility of the problem of equivalence of programs},
     journal = {Diskretnaya Matematika},
     pages = {72--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a5/}
}
TY  - JOUR
AU  - V. L. Shcherbina
TI  - A case of insolubility of the problem of equivalence of programs
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 72
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a5/
LA  - ru
ID  - DM_2011_23_1_a5
ER  - 
%0 Journal Article
%A V. L. Shcherbina
%T A case of insolubility of the problem of equivalence of programs
%J Diskretnaya Matematika
%D 2011
%P 72-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_1_a5/
%G ru
%F DM_2011_23_1_a5
V. L. Shcherbina. A case of insolubility of the problem of equivalence of programs. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 72-83. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a5/

[1] Glushkov V. M., Letichevskii A. A., “Teoriya diskretnykh preobrazovatelei”, Izbrannye voprosy algebry i logiki, 1973, 5–39 | Zbl

[2] Zakharov V. A., “Bystrye algoritmy razresheniya ekvivalentnosti operatornykh programm na uravnoveshennykh shkalakh”, Matematicheskie voprosy kibernetiki, 7, 1998, 257–280

[3] Zakharov V. A., “Bystrye algoritmy razresheniya ekvivalentnosti propozitsionalnykh operatornykh programm na uporyadochennykh polugruppovykh shkalakh”, Vestnik Moskovskogo universiteta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1999, no. 3, 29–35 | Zbl

[4] Letichevskii A. A., “Ekvivalentnost avtomatov otnositelno polugrupp”, Teoreticheskaya kibernetika, 1970, no. 6, 1–71

[5] Lyapunov A. A., “O logicheskikh skhemakh programm”, Problemy kibernetiki, 1, 1958, 46–74 | Zbl

[6] Podlovchenko R. I., “Ot skhem Yanova k teorii modelei programm”, Matematicheskie voprosy kibernetiki, 7, 1998, 281–302 | MR | Zbl

[7] Podlovchenko R. I., “Polugruppovye modeli programm”, Programmirovanie, 1981, no. 4, 9–19 | MR

[8] Podlovchenko R. I., “Sistema preobrazovanii, polnaya v klasse skhem programm s perestanovochnymi operatorami”, Programmirovanie, 1998, no. 2, 58–67 | MR | Zbl

[9] Scherbina V. L., Zakharov V. A., “O slozhnosti raspoznavaniya ekvivalentnosti mashin Tyuringa bez zapisi na lentu”, Materialy XVI Mezhdunarodnoi shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem”, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, Moskva, 2006, 147–150

[10] Yanov Yu. I., “O logicheskikh skhemakh algoritmov”, Problemy kibernetiki, 1, 1958, 75–127 | Zbl