Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2011_23_1_a4, author = {S. V. Rykov}, title = {On properties of the {Klimov--Shamir} generator of pseudorandom numbers}, journal = {Diskretnaya Matematika}, pages = {51--71}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a4/} }
S. V. Rykov. On properties of the Klimov--Shamir generator of pseudorandom numbers. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 51-71. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a4/
[1] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Matematicheskie zametki, 55:2 (1994), 3–46 | MR | Zbl
[2] Anashin V. S., “Uniformly distributed sequences over $p$-adic integers”, Proc. Intern. Conf. “Number theoretic and algebraic methods in computer science”, eds. van der Poorten A. J., Shparlinsky I., Zimmer H. G., World Scientific, Singapore, 1995, 1–18 | MR | Zbl
[3] Anashin V. S., “Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl
[4] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskretnaya matematika, 14:4 (2002), 3–64 | MR | Zbl
[5] Anashin V. S., “Ergodic transformations in the space of $p$-adic integers”, AIP Conf. Proc., 826 (2006), 3–24 | DOI | MR | Zbl
[6] Anashin V. S., Khrennikov A. Yu., Applied algebraic dynamics, de Gruyter, Berlin, 2009 | MR | Zbl
[7] Bénony V., Recher F., Wegrzynowski E., Fontaine C., “Cryptanalysis of a particular case of Klimov–Shamir Pseudo-Random Generator”, Lect. Notes Computer Sci., 3486, 2004, 313–322
[8] Eichenauer-Herrmann`J., “Quadratic congruential pseudorandom numbers: Distribution of triples”, J. Comput. Appl. Math., 62 (1995), 239–253 | DOI | MR | Zbl
[9] Eichenauer-Herrmann J., “Quadratic congruential pseudorandom numbers: Distribution of lagged pairs”, J. Comput. Appl. Math., 79 (1997), 75–85 | DOI | MR | Zbl
[10] Emmerich F., “Equidistribution properties of quadratic congruential pseudorandom numbers”, J. Comput. Appl. Math., 79 (1997), 207–214 | DOI | MR | Zbl
[11] Klimov A., Applications of T-functions in cryptography, PhD Thesis, Dept. Appl. Math. Computer Sci., Weizmann Institute of Science, Rehovot, 2005
[12] Klimov A., Shamir A., “A new class of invertible mappings”, Lect. Notes Comput. Sci., 2523, 2002, 470–483 | Zbl
[13] Klimov A., Shamir A., “Cryptographic applications of T-functions”, Lect. Notes Comput. Sci., 3006, 2003, 248–261 | MR
[14] Klimov A., Shamir A., “New cryptographic primitives based on multiword T-functions”, Lect. Notes Comput. Sci., 3017, 2004, 1–15 | Zbl
[15] Klimov A., Shamir A., “New applications of T-functions in block ciphers and hash functions”, Lect. Notes Comput. Sci., 3557, 2005, 18–31 | Zbl
[16] Molland H., Helleseth T., “A linear weakness in the Klimov–Shamir T-function”, Proc. ISIT' 2005, IEEE, 2005, 1106–1110
[17] Molland H., Helleseth T., “Linear properties in T-functions”, IEEE Trans. Inform. Theory, 52:11 (2006), 5151–5157 | DOI | MR
[18] Wang J.-S., Qi W.-F., “Linear equation on polynomial single cycle T-functions”, Lect. Notes Comput. Sci., 4990, 2008, 256–270 | MR | Zbl