Limit theorems for the joint distribution of component sizes of a~random mapping with a~known number of components
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the mapping $C_{N,n}$ of a set with $n$ numbered elements into itself, which has $N\le n$ connected components and is uniformly distributed on the set of all such mappings. We denote the number of such mappings by $a(n, N)$. In addition to the known estimates we derive some new estimates of the number $a(n, N)$ under the condition that $n\to\infty$ and $N=N(n)$. Let $\eta_1,\dots,\eta_N$ be the sizes of connected components of the random mapping $C_{N,n}$, numbered in one of the $N!$ possible ways. We obtain limit theorems estimating the distribution of the random vector $(\eta_1,\dots,\eta_N)$ as $n,N\to\infty$ including the domain of large deviations. A new asymptotic estimate of the local probabilities for a sum of independent identically distributed random variables which determine the corresponding generalised allocation scheme is obtained.
@article{DM_2011_23_1_a1,
     author = {A. N. Timashov},
     title = {Limit theorems for the joint distribution of component sizes of a~random mapping with a~known number of components},
     journal = {Diskretnaya Matematika},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a1/}
}
TY  - JOUR
AU  - A. N. Timashov
TI  - Limit theorems for the joint distribution of component sizes of a~random mapping with a~known number of components
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 21
EP  - 27
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a1/
LA  - ru
ID  - DM_2011_23_1_a1
ER  - 
%0 Journal Article
%A A. N. Timashov
%T Limit theorems for the joint distribution of component sizes of a~random mapping with a~known number of components
%J Diskretnaya Matematika
%D 2011
%P 21-27
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_1_a1/
%G ru
%F DM_2011_23_1_a1
A. N. Timashov. Limit theorems for the joint distribution of component sizes of a~random mapping with a~known number of components. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 21-27. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a1/

[1] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR | Zbl

[2] Timashëv A. N., “Sluchainye otobrazheniya konechnykh mnozhestv s izvestnym chislom komponent”, Teoriya veroyatnostei i ee primeneniya, 48:4 (2003), 818–828 | MR | Zbl

[3] Timashëv A. N., “Asimptoticheskie razlozheniya raspredeleniya chisla komponent v sluchainom otobrazhenii”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:3 (2008), 569–570

[4] Pavlov Yu. L., “Predelnye raspredeleniya odnoi kharakteristiki sluchainogo otobrazheniya”, Teoriya veroyatnostei i ee primeneniya, 26:4 (1981), 841–847 | MR | Zbl

[5] Cheplyukova I. A., “Ob odnoi kharakteristike sluchainogo otobrazheniya s izvestnym chislom tsiklov”, Diskretnaya matematika, 18:3 (2006), 43–60 | MR | Zbl

[6] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | MR | Zbl

[7] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[8] Timashëv A. N., “Ob odnom obobschenii teoremy Bekeshi”, Obozrenie prikladnoi i promyshlennoi matematiki, 13:6 (2006), 1042–1044

[9] Timashëv A. N., “Lokalnaya normalnaya i puassonovskie teoremy v obobschennoi skheme razmescheniya s ogranicheniyami na zapolneniya yacheek”, Obozrenie prikladnoi i promyshlennoi matematiki, 12:3 (2005), 681–682