Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2010_22_4_a7, author = {D. N. Bylkov and A. A. Nechaev}, title = {An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence}, journal = {Diskretnaya Matematika}, pages = {104--120}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/} }
TY - JOUR AU - D. N. Bylkov AU - A. A. Nechaev TI - An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence JO - Diskretnaya Matematika PY - 2010 SP - 104 EP - 120 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/ LA - ru ID - DM_2010_22_4_a7 ER -
%0 Journal Article %A D. N. Bylkov %A A. A. Nechaev %T An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence %J Diskretnaya Matematika %D 2010 %P 104-120 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/ %G ru %F DM_2010_22_4_a7
D. N. Bylkov; A. A. Nechaev. An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 104-120. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Koltsa Galua v prilozheniyakh k kodam i rekurrentam”, Trudy Akademii kriptografii RF, Nauka, Moskva, 1998 | Zbl
[3] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Uspekhi matem. nauk, 48:1 (1993), 167–168 | MR | Zbl
[4] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR
[5] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004
[6] Tian Tian, Wen-Feng Qi, “Injectivity of compressing map on primitive sequences over $\mathbb Z_{p^l}$”, IEEE Trans. Inform. Theory, 53:8 (2007), 2960–2966 | DOI | MR
[7] Xuan-Yong Zhu, Wen-Feng Qi, “Uniqueness of the distribution of zeros of primitive level sequences over $\mathbb Z_{p^n}$”, Finite Fields Appl., 11:1 (2005), 30–44 | DOI | MR | Zbl
[8] Xuan-Yong Zhu, Wen-Feng Qi, “Compression mappings on primitive sequences over $\mathbb Z_{p^n}$”, IEEE Trans. Inform. Theory, 50:10 (2004), 2442–2448 | DOI | MR
[9] Xuan-Yong Zhu, Wen-Feng Qi, “Further results of compressing maps on primitive sequences over $\mathbb Z_{p^n}$”, Math. Comp., 77 (2008), 1623–1637 | DOI | MR | Zbl
[10] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | MR | Zbl