An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 104-120
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ be a linear recurring sequence of maximal period over the ring $\mathbf Z_{p^n}$ and be a pseudo-random sequence over the field $\mathbf Z_p$ obtained by multiplying the highest coordinate sequence of $u$ by some polynomial. In this paper we analyse possibilities and ways to restore $u$ from a given $v$. A short survey of earlier results is given.
@article{DM_2010_22_4_a7,
author = {D. N. Bylkov and A. A. Nechaev},
title = {An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence},
journal = {Diskretnaya Matematika},
pages = {104--120},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/}
}
TY - JOUR
AU - D. N. Bylkov
AU - A. A. Nechaev
TI - An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence
JO - Diskretnaya Matematika
PY - 2010
SP - 104
EP - 120
VL - 22
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/
LA - ru
ID - DM_2010_22_4_a7
ER -
%0 Journal Article
%A D. N. Bylkov
%A A. A. Nechaev
%T An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence
%J Diskretnaya Matematika
%D 2010
%P 104-120
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/
%G ru
%F DM_2010_22_4_a7
D. N. Bylkov; A. A. Nechaev. An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 104-120. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/