Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2010_22_4_a7, author = {D. N. Bylkov and A. A. Nechaev}, title = {An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence}, journal = {Diskretnaya Matematika}, pages = {104--120}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/} }
TY - JOUR AU - D. N. Bylkov AU - A. A. Nechaev TI - An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence JO - Diskretnaya Matematika PY - 2010 SP - 104 EP - 120 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/ LA - ru ID - DM_2010_22_4_a7 ER -
%0 Journal Article %A D. N. Bylkov %A A. A. Nechaev %T An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence %J Diskretnaya Matematika %D 2010 %P 104-120 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/ %G ru %F DM_2010_22_4_a7
D. N. Bylkov; A. A. Nechaev. An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 104-120. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a7/