The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 156-157
Voir la notice de l'article provenant de la source Math-Net.Ru
For the number $S_n$ of repetition-free Boolean functions of $n$ variables in the basis $B_1$, it is proved that, as $n\to\infty$,
$$
S_n\sim cn^{-3/2}\alpha^nn!,
$$
where $c$ and $\alpha$ are some constants.
@article{DM_2010_22_4_a10,
author = {V. A. Voblyi},
title = {The asymptotics of the number of repetition-free {Boolean} functions in the basis~$B_1$},
journal = {Diskretnaya Matematika},
pages = {156--157},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/}
}
V. A. Voblyi. The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 156-157. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/