The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 156-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the number $S_n$ of repetition-free Boolean functions of $n$ variables in the basis $B_1$, it is proved that, as $n\to\infty$, $$ S_n\sim cn^{-3/2}\alpha^nn!, $$ where $c$ and $\alpha$ are some constants.
@article{DM_2010_22_4_a10,
     author = {V. A. Voblyi},
     title = {The asymptotics of the number of repetition-free {Boolean} functions in the basis~$B_1$},
     journal = {Diskretnaya Matematika},
     pages = {156--157},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 156
EP  - 157
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/
LA  - ru
ID  - DM_2010_22_4_a10
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$
%J Diskretnaya Matematika
%D 2010
%P 156-157
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/
%G ru
%F DM_2010_22_4_a10
V. A. Voblyi. The asymptotics of the number of repetition-free Boolean functions in the basis~$B_1$. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 156-157. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a10/

[1] Vinokurov S. F., Peryazev N. A., Izbrannye voprosy teorii bulevykh funktsii, Fizmatlit, Moskva, 2001 | Zbl

[2] Lavrentev M. A., Shabat B. M., Metody teorii funktsii kompleksnogo peremennogo, Nauka, Moskva, 1965 | MR