The summation of Markov sequences on a~finite abelian group
Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 44-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the conditions under which the sum of independent Markov sequences on a finite abelian group $G$ is also a simple homogeneous Markov chain on the group $G$ with some matrix of transition probabilities. The considered problems concern the well-known procedure of consolidation of states of Markov chains. In this paper we develop a method based on the reduction of the initial problem to the solution of a system of special form of nonlinear equations over group algebras. We obtain new conditions under which sums of Markov chains on an arbitrary abelian group $G=Z_m$ are Markov chains, and necessary and sufficient conditions under which a sum of independent realisations of the initial Markov chains is also a simple homogeneous Markov chain.
@article{DM_2010_22_3_a4,
     author = {M. I. Rozhkov},
     title = {The summation of {Markov} sequences on a~finite abelian group},
     journal = {Diskretnaya Matematika},
     pages = {44--62},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_3_a4/}
}
TY  - JOUR
AU  - M. I. Rozhkov
TI  - The summation of Markov sequences on a~finite abelian group
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 44
EP  - 62
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_3_a4/
LA  - ru
ID  - DM_2010_22_3_a4
ER  - 
%0 Journal Article
%A M. I. Rozhkov
%T The summation of Markov sequences on a~finite abelian group
%J Diskretnaya Matematika
%D 2010
%P 44-62
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_3_a4/
%G ru
%F DM_2010_22_3_a4
M. I. Rozhkov. The summation of Markov sequences on a~finite abelian group. Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 44-62. http://geodesic.mathdoc.fr/item/DM_2010_22_3_a4/

[1] Burke C., Rosenblatt M., “A Markovian function of a Markov chain”, Ann. Math. Stat., 29 (1958), 1112–1122 | DOI | MR | Zbl

[2] Sarmanov O. V., Zakharov V. K., “Mery zavisimosti mezhdu sluchainymi velichinami i spektry stokhasticheskikh yader i matrits”, Matem. sb., 52(94):4 (1960), 953–990 | MR | Zbl

[3] Sarmanov O. V., Zakharov V. K., “Ukrupnenie sostoyanii tsepi Markova i statsionarnoe izmenenie spektra”, Dokl. AN SSSR, 160:4 (1965), 762–764 | MR | Zbl

[4] Kertis Ch., Reiner I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, Moskva, 1969 | MR

[5] Kemeni Dzh., Snell Dzh., Konechnye tsepi Markova, Nauka, Moskva, 1970

[6] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, Moskva, 1971 | MR

[7] Rozhkov M. I., “O summirovanii tsepei Markova na konechnoi gruppe”, Trudy po diskretnoi matematike, 3, 2000, 195–214