On conditional Internet graphs whose vertex degrees have no mathematical expectation
Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 20-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider conditional random graphs of Internet type under the condition that the number of edges of the graph is known and the degrees of the vertices have no mathematical expectation. We prove limit theorems for the maximum vertex degree and the number of vertices of a given degree.
@article{DM_2010_22_3_a2,
     author = {Yu. L. Pavlov},
     title = {On conditional {Internet} graphs whose vertex degrees have no mathematical expectation},
     journal = {Diskretnaya Matematika},
     pages = {20--33},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_3_a2/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - On conditional Internet graphs whose vertex degrees have no mathematical expectation
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 20
EP  - 33
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_3_a2/
LA  - ru
ID  - DM_2010_22_3_a2
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T On conditional Internet graphs whose vertex degrees have no mathematical expectation
%J Diskretnaya Matematika
%D 2010
%P 20-33
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_3_a2/
%G ru
%F DM_2010_22_3_a2
Yu. L. Pavlov. On conditional Internet graphs whose vertex degrees have no mathematical expectation. Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 20-33. http://geodesic.mathdoc.fr/item/DM_2010_22_3_a2/

[1] Faloutsos C., Faloutsos P., Faloutsos M., “On power-law relationships of the Internet topology”, Computer Communications Rev., 29 (1999), 251–262 | DOI

[2] Janson S., Luczak T., Rucinski A., Random graphs, Wiley, New York, 2000 | MR

[3] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55 (2004), 3–23 | DOI

[4] Pavlov Yu. L., Cheplyukova I. A., “Sluchainye grafy Internet-tipa i obobschennaya skhema razmescheniya”, Diskretnaya matematika, 20:3 (2008), 3–18 | MR | Zbl

[5] Pavlov Yu. L., “O predelnykh raspredeleniyakh stepenei vershin v uslovnykh Internet-grafakh”, Diskretnaya matematika, 21:3 (2009), 14–23 | MR

[6] Robinson J. E., “Note on the Bose–Einstein integral functions”, Phys. Rev. 2, 83 (1951), 678–679 | DOI | MR | Zbl

[7] Wood D., Techn. Rep. 15-20, Univ. Kent, 1992

[8] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[9] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, Moskva, 1965