The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 133-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a detailed description of the Voronoi polyhedra $P_V(E_6)$ of the rooted lattice $E_6$ and of the lattice dual to $E_6$. For these polyhedra, tables of types of all faces and the number of faces of each type are given. It is known that the polyhedron $P_V(E_6)$ is the union of the Schläfli polyhedron $P_\mathrm{Schl}$ and its antipodal polyhedron $-P_\mathrm{Schl}$. In this paper, it is proved that is the intersection of these polyhedra.
@article{DM_2010_22_2_a9,
     author = {V. P. Grishukhin},
     title = {The {Voronoi} polyhedra of the rooted lattice $E_6$ and of its dual lattice},
     journal = {Diskretnaya Matematika},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 133
EP  - 147
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/
LA  - ru
ID  - DM_2010_22_2_a9
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
%J Diskretnaya Matematika
%D 2010
%P 133-147
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/
%G ru
%F DM_2010_22_2_a9
V. P. Grishukhin. The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 133-147. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/

[1] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, Mir, Moskva, 1990

[2] Conway J. H., Sloane N. J. A., The cell structures of certain lattices, Springer, Berlin, 1991 | MR | Zbl

[3] Ryshkov S. S., Bolshakova E. A., “K teorii korennykh paralleloedrov”, Izv. RAN. Ser. matem., 69:6 (2005), 187–210 | MR | Zbl

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, Moskva, 1988 | MR

[5] Rid M., Algebraicheskaya geometriya dlya vsekh, Mir, Moskva, 1991 | MR

[6] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR | Zbl

[7] Worley R. T., “The Voronoi region of $E_6^*$”, J. Austral. Math. Soc. A, 43 (1987), 268–276 | DOI | MR

[8] Coxeter H. S. M., Regular polytopes, Dover, New York, 1973 | MR

[9] Baranovskii E. P., “Razbienie evklidovykh prostranstv na $L$-mnogogranniki nekotorykh sovershennykh reshetok”, Trudy Matematicheskogo instituta im. V. A. Steklova, 196, 1991, 27–46 | MR | Zbl

[10] Ryshkov S. S., Baranovskii E. P., “Sovershennye reshetki kak dopustimye tsentrirovki”, Itogi nauki i tekhniki. Problemy geometrii, 17, VINITI, Moskva, 1985, 3–49 | MR | Zbl

[11] Coxeter H. S. M., “The polytope $2_{21}$ whose 27 vertices correspond to the lines on the general cubic surface”, Amer. J. Math., 62 (1940), 457–486 | DOI | MR | Zbl

[12] Ryshkov S. S., Baranovskii E. P., $C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii), Trudy Matematicheskogo instituta im. V. A. Steklova, 137, 1976 | MR | Zbl

[13] Ryshkov S. S., Baranovskii E. P., “Repartitioing complexes in $n$-dimensional lattices (with full description for $n\leq6$)”, Voronoi's impact of modern science, v. 2, Inst. Math., Kyiv, 1998, 115–124 | Zbl