The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 133-147

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a detailed description of the Voronoi polyhedra $P_V(E_6)$ of the rooted lattice $E_6$ and of the lattice dual to $E_6$. For these polyhedra, tables of types of all faces and the number of faces of each type are given. It is known that the polyhedron $P_V(E_6)$ is the union of the Schläfli polyhedron $P_\mathrm{Schl}$ and its antipodal polyhedron $-P_\mathrm{Schl}$. In this paper, it is proved that is the intersection of these polyhedra.
@article{DM_2010_22_2_a9,
     author = {V. P. Grishukhin},
     title = {The {Voronoi} polyhedra of the rooted lattice $E_6$ and of its dual lattice},
     journal = {Diskretnaya Matematika},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 133
EP  - 147
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/
LA  - ru
ID  - DM_2010_22_2_a9
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
%J Diskretnaya Matematika
%D 2010
%P 133-147
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/
%G ru
%F DM_2010_22_2_a9
V. P. Grishukhin. The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 133-147. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a9/