Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2010_22_2_a7, author = {M. I. Rozhkov}, title = {On some classes of nonlinear shift registers with the same cyclic structure}, journal = {Diskretnaya Matematika}, pages = {96--119}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/} }
M. I. Rozhkov. On some classes of nonlinear shift registers with the same cyclic structure. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 96-119. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/
[1] Gantmakher F. R., Teoriya matrits, Nauka, Moskva, 1988 | MR | Zbl
[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1972
[3] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR
[4] Berlekamp E. R., “Distribution of cyclic matrices in finite field”, Duke Math. J., 33 (1966), 45–48 | DOI | MR | Zbl
[5] Dickson L. E., Linear groups with an exposition of the Galois field theory, Teubner, Leipzig, 1901 | Zbl
[6] Fredricksen H., “A class of nonlinear de Bruijn cycles”, J. Comb. Theory A, 19 (1975), 192–199 | DOI | MR | Zbl
[7] Golomb S. W., Shift Register Sequences, Aegean Park, Laguna Hills, California, 1982
[8] Games R. A., Chan A. H., “A fast algorithm for determining the complexity of a binary sequence with period $2^n$”, IEEE Trans. Inf. Theory, 29 (1983), 144–146 | DOI | MR | Zbl
[9] Games R. A., “There are no de Bruijn sequences of span $n$ with complexity $2^{n-1}+n+1$”, J. Comb. Theory A, 34 (1983), 248–251 | DOI | MR
[10] Kjeldsen K., “On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions”, J. Comb. Theory A, 20 (1976), 154–169 | DOI | MR | Zbl
[11] Lempel A., “On a homomorphism of the de Bruijn graph and its application to the design of feedback shift registers”, IEEE Trans. Comput., 19 (1970), 1204–1209 | DOI | MR | Zbl
[12] Lempel A., Etzion T., “On the distribution of de Bruijn sequences of given complexity”, IEEE Trans. Inf. Theory, 30 (1984), 611–614 | DOI | MR | Zbl
[13] Lempel A., Etzion T., “Construction of de Bruijn sequences of minimal complexity”, IEEE Trans. Inf. Theory, 30 (1984), 705–709 | DOI | MR | Zbl
[14] Zurawiecki J., “Boolean shift-registers”, Demonstr. Math., 10 (1977), 405–415 | MR | Zbl
[15] Solodovnikov V. I., “O polugruppe, porozhdennoi avtomatnymi otobrazheniyami obratimogo avtomata”, Trudy po diskretnoi matematike, 4, 2001, 231–242
[16] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios ARV, Moskva, 2003