On some classes of nonlinear shift registers with the same cyclic structure
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 96-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigating the cyclic structure of an autonomous automaton $R(t)=R(G^n,\delta_f)$ named a shift register with feedback function $f$, $f\colon G^n\to G$, and transition function $$ \delta_f(y_1,y_2,\dots,y_n)=(y_2,y_3,\dots,y_n,f(y_1,y_2,\dots,y_n)). $$ An important problem in this field of investigation consists of constructing a nonlinear automaton $R(f)$ of a given cyclic structure, in particular, possessing a cycle of length $2^n$ or $2^n-1$.
@article{DM_2010_22_2_a7,
     author = {M. I. Rozhkov},
     title = {On some classes of nonlinear shift registers with the same cyclic structure},
     journal = {Diskretnaya Matematika},
     pages = {96--119},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/}
}
TY  - JOUR
AU  - M. I. Rozhkov
TI  - On some classes of nonlinear shift registers with the same cyclic structure
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 96
EP  - 119
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/
LA  - ru
ID  - DM_2010_22_2_a7
ER  - 
%0 Journal Article
%A M. I. Rozhkov
%T On some classes of nonlinear shift registers with the same cyclic structure
%J Diskretnaya Matematika
%D 2010
%P 96-119
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/
%G ru
%F DM_2010_22_2_a7
M. I. Rozhkov. On some classes of nonlinear shift registers with the same cyclic structure. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 96-119. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/

[1] Gantmakher F. R., Teoriya matrits, Nauka, Moskva, 1988 | MR | Zbl

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1972

[3] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR

[4] Berlekamp E. R., “Distribution of cyclic matrices in finite field”, Duke Math. J., 33 (1966), 45–48 | DOI | MR | Zbl

[5] Dickson L. E., Linear groups with an exposition of the Galois field theory, Teubner, Leipzig, 1901 | Zbl

[6] Fredricksen H., “A class of nonlinear de Bruijn cycles”, J. Comb. Theory A, 19 (1975), 192–199 | DOI | MR | Zbl

[7] Golomb S. W., Shift Register Sequences, Aegean Park, Laguna Hills, California, 1982

[8] Games R. A., Chan A. H., “A fast algorithm for determining the complexity of a binary sequence with period $2^n$”, IEEE Trans. Inf. Theory, 29 (1983), 144–146 | DOI | MR | Zbl

[9] Games R. A., “There are no de Bruijn sequences of span $n$ with complexity $2^{n-1}+n+1$”, J. Comb. Theory A, 34 (1983), 248–251 | DOI | MR

[10] Kjeldsen K., “On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions”, J. Comb. Theory A, 20 (1976), 154–169 | DOI | MR | Zbl

[11] Lempel A., “On a homomorphism of the de Bruijn graph and its application to the design of feedback shift registers”, IEEE Trans. Comput., 19 (1970), 1204–1209 | DOI | MR | Zbl

[12] Lempel A., Etzion T., “On the distribution of de Bruijn sequences of given complexity”, IEEE Trans. Inf. Theory, 30 (1984), 611–614 | DOI | MR | Zbl

[13] Lempel A., Etzion T., “Construction of de Bruijn sequences of minimal complexity”, IEEE Trans. Inf. Theory, 30 (1984), 705–709 | DOI | MR | Zbl

[14] Zurawiecki J., “Boolean shift-registers”, Demonstr. Math., 10 (1977), 405–415 | MR | Zbl

[15] Solodovnikov V. I., “O polugruppe, porozhdennoi avtomatnymi otobrazheniyami obratimogo avtomata”, Trudy po diskretnoi matematike, 4, 2001, 231–242

[16] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios ARV, Moskva, 2003