On some classes of nonlinear shift registers with the same cyclic structure
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 96-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigating the cyclic structure of an autonomous automaton $R(t)=R(G^n,\delta_f)$ named a shift register with feedback function $f$, $f\colon G^n\to G$, and transition function $$ \delta_f(y_1,y_2,\dots,y_n)=(y_2,y_3,\dots,y_n,f(y_1,y_2,\dots,y_n)). $$ An important problem in this field of investigation consists of constructing a nonlinear automaton $R(f)$ of a given cyclic structure, in particular, possessing a cycle of length $2^n$ or $2^n-1$.
@article{DM_2010_22_2_a7,
     author = {M. I. Rozhkov},
     title = {On some classes of nonlinear shift registers with the same cyclic structure},
     journal = {Diskretnaya Matematika},
     pages = {96--119},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/}
}
TY  - JOUR
AU  - M. I. Rozhkov
TI  - On some classes of nonlinear shift registers with the same cyclic structure
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 96
EP  - 119
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/
LA  - ru
ID  - DM_2010_22_2_a7
ER  - 
%0 Journal Article
%A M. I. Rozhkov
%T On some classes of nonlinear shift registers with the same cyclic structure
%J Diskretnaya Matematika
%D 2010
%P 96-119
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/
%G ru
%F DM_2010_22_2_a7
M. I. Rozhkov. On some classes of nonlinear shift registers with the same cyclic structure. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 96-119. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a7/