On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 74-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a method to compute the linear complexity of binary periodic sequences formed on the basis of biquadratic and sextic residue classes through the use of expansion of the sequence period into a sum of squares of integers. The values of the sequence polynomial are computed with the use of cyclotomic numbers of orders four and six.
@article{DM_2010_22_1_a5,
author = {V. A. Edemskii},
title = {On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes},
journal = {Diskretnaya Matematika},
pages = {74--82},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/}
}
TY - JOUR AU - V. A. Edemskii TI - On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes JO - Diskretnaya Matematika PY - 2010 SP - 74 EP - 82 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/ LA - ru ID - DM_2010_22_1_a5 ER -
V. A. Edemskii. On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 74-82. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/