Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2010_22_1_a5, author = {V. A. Edemskii}, title = {On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes}, journal = {Diskretnaya Matematika}, pages = {74--82}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/} }
TY - JOUR AU - V. A. Edemskii TI - On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes JO - Diskretnaya Matematika PY - 2010 SP - 74 EP - 82 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/ LA - ru ID - DM_2010_22_1_a5 ER -
V. A. Edemskii. On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 74-82. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a5/
[1] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl
[2] Ding C., Helleseth T., Shan W., “On the linear complexity of Legendre sequences”, IEEE Trans. Inf. Theory, 44:3 (1998), 1275–1278 | MR | Zbl
[3] Ding C., Helleseth T., Lam K. Y., “Several classes of binary sequences with tree-level autocorrelation”, IEEE Trans. Inf. Theory, 45 (1999), 2601–2606 | DOI | MR
[4] Kim J. H., Song H. Y., “On the linear complexity of Hall's sextic residue sequences”, IEEE Trans. Inf. Theory, 47 (2001), 2094–2096 | DOI | MR | Zbl
[5] Hall M., Combinatorial theory, Blaisdell, London, 1967 | MR | Zbl
[6] Whiteman A. L., “The cyclotomic numbers of order twelve”, Acta Arithmetica, 6 (1960), 53–76 | MR | Zbl
[7] Ireland K., Rosen M., A classical introduction to modern number theory, Springer, Berlin, 1982 | MR | Zbl
[8] Gantmakher V. E., Edemskii V. A., “Rezultaty sinteza dvoichnykh posledovatelnostei s kvaziodnourovnevoi avtokorrelyatsionnoi funktsiei, formiruemykh na osnove klassov vychetov po prostomu modulyu”, Izvestiya vuzov. Radioelektronika, 2007, no. 4, 14–23