Fast algorithms for elementary operations on complex power series
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 17-49

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the inversion of a complex-valued power series can be realised asymptotically with complexity of 5/4 multiplications (if we compare the upper bounds). It is shown that the calculation of the square root requires asymptotically also no more than 5/4 multiplications, the computation of an exponential has the complexity equal to 13/6 multiplications, and raising to an arbitrary power requires 41/12 multiplications.
@article{DM_2010_22_1_a2,
     author = {I. S. Sergeev},
     title = {Fast algorithms for elementary operations on complex power series},
     journal = {Diskretnaya Matematika},
     pages = {17--49},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a2/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - Fast algorithms for elementary operations on complex power series
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 17
EP  - 49
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a2/
LA  - ru
ID  - DM_2010_22_1_a2
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T Fast algorithms for elementary operations on complex power series
%J Diskretnaya Matematika
%D 2010
%P 17-49
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a2/
%G ru
%F DM_2010_22_1_a2
I. S. Sergeev. Fast algorithms for elementary operations on complex power series. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 17-49. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a2/