Score lists in $[h$-$k]$-bipartite hypertournaments
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 150-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m,n,h$ and $k$ be integers such that $m\geq h>1$ and $n\geq k>1$. An $[h$-$k]$-bipartite hypertournament on $m+n$ vertices is a triple $(U,V,E)$, with two vertex sets $U$ and $V$, $|U|=m$, $|V|=n$, together with an arc set $E$, a set of $(h+k)$-tuples of vertices, with exactly $h$ vertices from $U$ and exactly $k$ vertices from $V$, called arcs, such that for any $h$-subset $U_1$ of $U$ and $k$-subset $V_1$ of $V$, $E$ contains exactly one of the $(h+k)!$ $(h+k)$-tuples whose $h$ entries belong to $U_1$ and $k$ entries belong to $V_1$. We obtain necessary and sufficient conditions for a pair of nondecreasing sequences of nonnegative integers to be the losing score lists or score lists of some $[h$-$k]$-bipartite hypertournament.
@article{DM_2010_22_1_a10,
     author = {Sh. Pirzada and T. A. Chishti and T. A. Naikoo},
     title = {Score lists in $[h$-$k]$-bipartite hypertournaments},
     journal = {Diskretnaya Matematika},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/}
}
TY  - JOUR
AU  - Sh. Pirzada
AU  - T. A. Chishti
AU  - T. A. Naikoo
TI  - Score lists in $[h$-$k]$-bipartite hypertournaments
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 150
EP  - 157
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/
LA  - ru
ID  - DM_2010_22_1_a10
ER  - 
%0 Journal Article
%A Sh. Pirzada
%A T. A. Chishti
%A T. A. Naikoo
%T Score lists in $[h$-$k]$-bipartite hypertournaments
%J Diskretnaya Matematika
%D 2010
%P 150-157
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/
%G ru
%F DM_2010_22_1_a10
Sh. Pirzada; T. A. Chishti; T. A. Naikoo. Score lists in $[h$-$k]$-bipartite hypertournaments. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/

[1] Bang C. M., Sharp H., “Score vectors of tournaments”, J. Combin. Theory B, 26 (1979), 81–84 | DOI | MR | Zbl

[2] Beineke L. W., Moon J. W., “On bipartite tournaments and scores”, Proc. 4th Intern. Graph Theory Conf., Kalamazoo, 1980, 55–71 | MR

[3] Berge C., Graphs and hypergraphs, North-Holland, Amsterdam, 1973 | MR | Zbl

[4] Koh Y., Ree S., “Score sequences of hypertournament matrices”, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 8 (2001), 185–191 | MR | Zbl

[5] Koh Y., Ree S., “On $k$-hypertournament matrices”, Linear Algebra Appl., 373 (2003), 183–195 | DOI | MR | Zbl

[6] Landau H. G., “On dominance relations and the structure of animal societies. III. The condition for a score structure”, Bull. Math. Biophys., 15 (1953), 143–148 | DOI | MR

[7] Zhou G., Yao T., Zhang K., “On score sequences of $k$-hypertournaments”, European J. Combin., 21 (2000), 993–1000 | DOI | MR | Zbl