Score lists in $[h$-$k]$-bipartite hypertournaments
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 150-157
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $m,n,h$ and $k$ be integers such that $m\geq h>1$ and $n\geq k>1$. An $[h$-$k]$-bipartite hypertournament on $m+n$ vertices is a triple $(U,V,E)$, with two vertex sets $U$ and $V$, $|U|=m$, $|V|=n$, together with an arc set $E$, a set of $(h+k)$-tuples of vertices, with exactly $h$ vertices from $U$ and exactly $k$ vertices from $V$, called arcs, such that for any $h$-subset $U_1$ of $U$ and $k$-subset $V_1$ of $V$, $E$ contains exactly one of the $(h+k)!$ $(h+k)$-tuples whose $h$ entries belong to $U_1$ and $k$ entries belong to $V_1$. We obtain necessary and sufficient conditions for a pair of nondecreasing sequences of nonnegative integers to be the losing score lists or score lists of some $[h$-$k]$-bipartite hypertournament.
@article{DM_2010_22_1_a10,
author = {Sh. Pirzada and T. A. Chishti and T. A. Naikoo},
title = {Score lists in $[h$-$k]$-bipartite hypertournaments},
journal = {Diskretnaya Matematika},
pages = {150--157},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/}
}
Sh. Pirzada; T. A. Chishti; T. A. Naikoo. Score lists in $[h$-$k]$-bipartite hypertournaments. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a10/