Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_4_a9, author = {N. V. Gravin}, title = {Nondegenerate colourings in the {Brooks} theorem}, journal = {Diskretnaya Matematika}, pages = {105--128}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a9/} }
N. V. Gravin. Nondegenerate colourings in the Brooks theorem. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 105-128. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a9/
[1] Bondy J. A., Murty U. S. R., Graph theory with applications, Elsevier, New York, 1976 | MR
[2] Hong-Jian L., Montgomery B., Poon Hoifung, “Upper bounds of dynamic chromatic number”, Ars Combinatoria, 68 (2003), 193–201 | MR | Zbl
[3] Montgomery B., Dynamic colouring, Ph. D. Dissertation, West Virginia Univ., 2001
[4] Brooks R. L., “On colouring the nodes of network”, Proc. Cambridge Philos. Soc., 37 (1941), 194–197 | DOI | MR | Zbl
[5] Meng X., Miao L., Li Z. R., Su B., “The conditional colouring numbers of pseudo-Halin graphs”, Ars Combinatoria, 79 (2006), 3–9 | MR | Zbl
[6] Fan Suohai, Lai Hong-Jian, Lin Jianliang, Montgomery B., Tao Zhishui, “Conditional colourings of graphs”, Discrete Math., 16 (2006), 1997–2004 | MR | Zbl
[7] Hind H., Molloy M., Reed B., “Colouring a graph frugally”, Combinatorica, 17 (1997), 469–482 | DOI | MR | Zbl
[8] Godsil C., Royle G., Algebraic graph theory, Springer, Berlin, 2001 | MR
[9] Lovász L., “On decomposition of graphs”, Stud. Sci. Math. Hungar., 1 (1966), 237–238 | MR | Zbl