Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_4_a10, author = {D. S. Malyshev}, title = {On the number of boundary classes in the 3-colouring problem}, journal = {Diskretnaya Matematika}, pages = {129--134}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a10/} }
D. S. Malyshev. On the number of boundary classes in the 3-colouring problem. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 129-134. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a10/
[1] Stockmeyer L., “Planar 3-colourability is polynomial complete”, ACM SIGACT News, 5:3 (1973), 19–25 | DOI
[2] Kochol M., Lozin V., Randerath B., “The 3-colourability problem on graphs with maximum degree four”, SIAM J. Comput., 32:5 (2003), 1128–1139 | DOI | MR | Zbl
[3] Grötchel M., Lovász L., Schrijver A., “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica, 1:2 (1981), 169–197 | DOI | MR
[4] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132:1–3 (2004), 17–26 | DOI | MR
[5] Alekseev V. E., “A polynomial algorithm for finding largest independent sets in fork-free graphs”, Discrete Appl. Math., 135:1–3 (2004), 3–16 | MR
[6] Malyshev D. S., “Granichnye klassy dlya zadachi o nezavisimom mnozhestve v klasse planarnykh grafov”, Vestnik Nizhegorodskogo gosudarstvennogo univ. im. N. I. Lobachevskogo, 2007, no. 2, 165–169
[7] Alekseev V. E., Korobitsyn D. V., Lozin V. V., “Boundary classes of graphs for the dominating set problem”, Discrete Math., 285:1–3 (2004), 1–6 | DOI | MR | Zbl