Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_3_a7, author = {V. D. Matveenko}, title = {Optimal paths in oriented graphs and eigenvectors in $\max$-$\oplus$ systems}, journal = {Diskretnaya Matematika}, pages = {79--98}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a7/} }
V. D. Matveenko. Optimal paths in oriented graphs and eigenvectors in $\max$-$\oplus$ systems. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 79-98. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a7/
[1] Bellman R., Dinamicheskoe programmirovanie, IL, Moskva, 1960 | MR
[2] Vorobev N. N., “Ekstremalnaya algebra polozhitelnykh matrits”, Elektron. Inform.-verarb. Kybernetik, 3 (1967), 39–71 | MR
[3] Vorobev N. N., “Ekstremalnaya algebra neotritsatelnykh matrits”, Elektron. Inform.-verarb. Kybernetik, 6 (1970), 303–312 | MR
[4] Romanovskii I. V., “Optimizatsiya statsionarnogo upravleniya diskretnym determinirovannym protsessom”, Kibernetika, 1967, no. 2, 66–78 | MR
[5] Romanovskii I. V., Algoritmy resheniya ekstremalnykh zadach, Nauka, Moskva, 1977 | MR
[6] Cuninghame-Green R., Minimax algebra, Springer, Berlin, 1979 | MR | Zbl
[7] Matveenko V. D., “Optimalnye traektorii skhemy dinamicheskogo programmirovaniya i ekstremalnye stepeni neotritsatelnykh matrits”, Diskretnaya matematika, 2:1 (1990), 59–71 | MR | Zbl
[8] Matveenko V. D., “O diskretnykh sublineinykh i superlineinykh operatorakh”, Diskretnaya matematika, 10:2 (1998), 87–100 | MR | Zbl
[9] Matveenko V. D., “Development with positive externalities: the case of the Russian economy”, J. Policy Modeling, 17:3 (1995), 207–221 | DOI
[10] Sanchez E., “Resolution of eigen fuzzy sets equations”, Fuzzy Sets Syst., 1 (1978), 69–74 | DOI | MR | Zbl
[11] Butkovič P., Cechlárová K., Szabó P., “Strong linear independence in bottleneck algebra”, Linear Algebra Appl., 94 (1987), 133–155 | DOI | MR | Zbl
[12] Cechlárová K., “Eigenvectors in bottleneck algebra”, Linear Algebra Appl., 175 (1992), 63–73 | DOI | MR | Zbl
[13] Cechlárová K., “Efficient computation of the greatest eigenvector in fuzzy algebra”, Tatra Mt. Math. Publ., 12 (1997), 73–79 | MR | Zbl
[14] Matveenko V. D., “Struktura optimalnykh traektorii diskretnoi determinirovannoi skhemy s diskontirovaniem”, Diskretnaya matematika, 10:3 (1998), 100–114 | MR | Zbl
[15] Matveenko V. D., “Struktura traektorii i vtoraya funktsiya-znachenie v optimizatsionnykh dinamicheskikh sistemakh s diskontirovaniem”, Avtomatika i telemekhanika, 1999, no. 1, 26–34 | MR | Zbl
[16] Vagner G., Osnovy issledovaniya operatsii, Mir, Moskva, 1973
[17] Dudnikov P. I., Samborskii S. N., Endomorfizmy polumodulya nad polukoltsom s idempotentnoi operatsiei, Preprint, IM AN USSR, Kiev, 1987 | MR
[18] Dudnikov P. I., Samborskii S. N., “Endomorfizmy polumodulei nad polukoltsami s idempotentnoi operatsiei”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 93–109 | MR | Zbl
[19] Maslov V. P., Kolokoltsev V. N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Fizmatlit, Moskva, 1994
[20] Zimmermann U., “Linear and combinatorial optimization in ordered algebraic structures”, Ann. Discrete Math., 10 (1981), 1–380 | DOI | MR
[21] Seneta E., Nonnegative matrices. An introduction to theory and applications, Allen Unwin, London, 1973 | MR | Zbl
[22] Ashmanov S. A., Vvedenie v matematicheskuyu ekonomiku, Nauka, Moskva, 1984 | MR | Zbl