On combinatorial Gray codes with distance~3
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a construction of the cyclic binary combinatorial Gray codes with distance 3 and dimension $n=2^k-1$, where $k=3,4,\dots$. We give a method of construction of Hamiltonian cycles in the graphs of minimum distances of binary Hamming codes. For all admissible lengths $n\ge15$, we give nonlinear perfect binary codes whose graphs of minimum distances contain a Hamiltonian cycle.
@article{DM_2009_21_3_a6,
author = {A. M. Romanov},
title = {On combinatorial {Gray} codes with distance~3},
journal = {Diskretnaya Matematika},
pages = {73--78},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/}
}
A. M. Romanov. On combinatorial Gray codes with distance~3. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/