On combinatorial Gray codes with distance~3
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a construction of the cyclic binary combinatorial Gray codes with distance 3 and dimension $n=2^k-1$, where $k=3,4,\dots$. We give a method of construction of Hamiltonian cycles in the graphs of minimum distances of binary Hamming codes. For all admissible lengths $n\ge15$, we give nonlinear perfect binary codes whose graphs of minimum distances contain a Hamiltonian cycle.
@article{DM_2009_21_3_a6,
     author = {A. M. Romanov},
     title = {On combinatorial {Gray} codes with distance~3},
     journal = {Diskretnaya Matematika},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On combinatorial Gray codes with distance~3
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 73
EP  - 78
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/
LA  - ru
ID  - DM_2009_21_3_a6
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On combinatorial Gray codes with distance~3
%J Diskretnaya Matematika
%D 2009
%P 73-78
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/
%G ru
%F DM_2009_21_3_a6
A. M. Romanov. On combinatorial Gray codes with distance~3. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/

[1] Savage C., “A survey of combinatorial Gray codes”, SIAM Review, 39:4 (1997), 605–629 | DOI | MR | Zbl

[2] Perezhogin A. L., “O tsiklicheskikh perechisleniyakh dvoichnykh naborov cherez zadannye rasstoyaniya”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 6:2 (1999), 62–69 | MR | Zbl

[3] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[4] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Problemy kibernetiki, 8, 1962, 337–339 | MR

[5] Romanov A. M., “Obzor metodov postroeniya nelineinykh sovershennykh dvoichnykh kodov”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 13:4 (2006), 60–88 | MR