On combinatorial Gray codes with distance~3
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a construction of the cyclic binary combinatorial Gray codes with distance 3 and dimension $n=2^k-1$, where $k=3,4,\dots$. We give a method of construction of Hamiltonian cycles in the graphs of minimum distances of binary Hamming codes. For all admissible lengths $n\ge15$, we give nonlinear perfect binary codes whose graphs of minimum distances contain a Hamiltonian cycle.
@article{DM_2009_21_3_a6,
     author = {A. M. Romanov},
     title = {On combinatorial {Gray} codes with distance~3},
     journal = {Diskretnaya Matematika},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On combinatorial Gray codes with distance~3
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 73
EP  - 78
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/
LA  - ru
ID  - DM_2009_21_3_a6
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On combinatorial Gray codes with distance~3
%J Diskretnaya Matematika
%D 2009
%P 73-78
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/
%G ru
%F DM_2009_21_3_a6
A. M. Romanov. On combinatorial Gray codes with distance~3. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 73-78. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a6/