Positively closed classes of three-valued logic generated by one-place functions
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 37-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the positive closure operator on the set $P_3$ of functions of three-valued logic. It is shown that in $P_3$ there are exactly 51 positively closed classes positively generated by one-place functions, 26 of these classes are generated by a single one-place function (including one of the positively precomplete in $P_3$ classes), and 25 classes are generated by two functions (including the class $P_3$ and the remaining 9 positively precomplete classes).
@article{DM_2009_21_3_a4,
     author = {S. S. Marchenkov},
     title = {Positively closed classes of three-valued logic generated by one-place functions},
     journal = {Diskretnaya Matematika},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Positively closed classes of three-valued logic generated by one-place functions
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 37
EP  - 44
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a4/
LA  - ru
ID  - DM_2009_21_3_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Positively closed classes of three-valued logic generated by one-place functions
%J Diskretnaya Matematika
%D 2009
%P 37-44
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a4/
%G ru
%F DM_2009_21_3_a4
S. S. Marchenkov. Positively closed classes of three-valued logic generated by one-place functions. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 37-44. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a4/