The key space of the McEliece--Sidelnikov cryptosystem
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 132-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The McEliece cryptosystem is one of the oldest public-key cryptosystems. It was proposed by R. J. McEliece in 1978. The McEliece cryptosystem is based on a certain NP-hard problem in the coding theory. In this paper we consider a generalisation of the McEliece cryptosystem proposed by V. M. Sidelnikov in 1994. The McEliece–Sidelnikov cryptosystem is based on $u$-fold use of the Reed–Muller codes $RM(r,m)$. This research is devoted to questions related to the space of equivalent secret keys of the new cryptosystem, that is, secret keys generating identical public keys. We study the structure of the set of public keys of the McEliece–Sidelnikov cryptosystem for an arbitrary number u of blocks. For the case of two blocks we describe all equivalence classes of secret keys with representatives of a special form.
@article{DM_2009_21_3_a10,
     author = {I. V. Chizhov},
     title = {The key space of the {McEliece--Sidelnikov} cryptosystem},
     journal = {Diskretnaya Matematika},
     pages = {132--159},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a10/}
}
TY  - JOUR
AU  - I. V. Chizhov
TI  - The key space of the McEliece--Sidelnikov cryptosystem
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 132
EP  - 159
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a10/
LA  - ru
ID  - DM_2009_21_3_a10
ER  - 
%0 Journal Article
%A I. V. Chizhov
%T The key space of the McEliece--Sidelnikov cryptosystem
%J Diskretnaya Matematika
%D 2009
%P 132-159
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a10/
%G ru
%F DM_2009_21_3_a10
I. V. Chizhov. The key space of the McEliece--Sidelnikov cryptosystem. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 132-159. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a10/

[1] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, DSN Progress Report 42–44, Jet Prop. Lab., Calif. Inst. Technol., Pasadena, CA, 1978, 114–116

[2] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl

[3] Sidelnikov V. M., Shestakov S. O., “O bezopasnosti sistemy shifrovaniya, postroennoi na osnove obobschennykh kodov Rida–Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | MR | Zbl

[4] Evseev G. S., “O slozhnosti dekodirovaniya lineinykh kodov”, Problemy peredachi informatsii, 19:1 (1983), 3–8 | MR | Zbl

[5] Kruk E. A., “Granitsa dlya slozhnosti dekodirovaniya lineinykh kodov”, Problemy peredachi informatsii, 25:3 (1989), 103–107 | MR | Zbl

[6] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[7] Pless V. S., Huffman W. C. (eds.), Handbook of coding theory, Vol. I–II, Elsevier, Amsterdam, 1998 | MR

[8] Sidelnikov V. M., Pershakov A. S., “Dekodirovanie kodov Rida–Mallera pri bolshom chisle oshibok”, Problemy peredachi informatsii, 28:3 (1992), 80–94 | MR | Zbl

[9] Karpunin G. A., “O klyuchevom prostranstve kriptosistemy Mak-Elisa na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 16:2 (2004), 79–84 | MR | Zbl

[10] Kasami T., Tokura N., Ivadari E., Inagaki Ya., Teoriya kodirovaniya, Mir, Moskva, 1978 | MR

[11] Kasami T., Tokura N., “On the weight structure of Reed–Muller codes”, IEEE Trans. Inform. Theory, 16 (1970), 752–759 | DOI | MR | Zbl