On the limit distributions of the vertex degrees of conditional Internet graphs
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random graphs modelling the structure of large data transmission networks including Internet. We investigate the subset of such graphs consisting of $N$ vertices under the condition that the number of edges is equal to $n$. We obtain the limit distributions of the maximum degree of vertices and the number of vertices of a given degree as $N,n\to\infty$ so that $n/N\to\lambda$, where $\lambda$ is a positive constant.
@article{DM_2009_21_3_a1,
     author = {Yu. L. Pavlov},
     title = {On the limit distributions of the vertex degrees of conditional {Internet} graphs},
     journal = {Diskretnaya Matematika},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a1/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - On the limit distributions of the vertex degrees of conditional Internet graphs
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 14
EP  - 23
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a1/
LA  - ru
ID  - DM_2009_21_3_a1
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T On the limit distributions of the vertex degrees of conditional Internet graphs
%J Diskretnaya Matematika
%D 2009
%P 14-23
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a1/
%G ru
%F DM_2009_21_3_a1
Yu. L. Pavlov. On the limit distributions of the vertex degrees of conditional Internet graphs. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 14-23. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a1/

[1] Cheplyukova I., Pavlov Yu., “Limit distributions of vertex degree in conditional power-law random graphs”, Trans. XXVI International Seminar on Stability Problems for Stochastic Models, Ort Braude College, Karmel, Israel, 2007, 52–59

[2] Pavlov Yu. L., Cheplyukova I. A., “Sluchainye grafy Internet-tipa i obobschennaya skhema razmescheniya”, Diskretnaya matematika, 20:3 (2008), 3–18 | MR | Zbl

[3] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55 (2004), 3–23 | DOI

[4] Faloutsos C., Faloutsos P., Faloutsos M., “On power-law relationships of the internet topology”, Computer Communications Rev., 29 (1999), 251–252 | DOI

[5] Newman M. E. J., Strogatz S. H., Watts D. J., “Random graphs with arbitrary degree distribution and their applications”, Phys. Rev. E, 64 (2001), 026118 | DOI

[6] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[7] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, Moskva, 1965

[8] Pavlov Yu. L., “Predelnoe raspredelenie ob'ema gigantskoi komponenty v sluchainom grafe Internet-tipa”, Diskretnaya matematika, 19:3 (2007), 22–34 | MR | Zbl

[9] Robinson J. E., “Note on the Bose–Einstein integral functions”, Phys. Rev. (2), 83 (1951), 678–679 | DOI | MR | Zbl

[10] Wood D., Techn. Rep. 15-20, Univ. Kent, 1992

[11] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | MR | Zbl

[12] Mukhin A. B., “Lokalnye predelnye teoremy dlya reshetchatykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 36:4 (1991), 660–674 | MR | Zbl

[13] Borovkov A. A., Kurs teorii veroyatnostei, Nauka, Moskva, 1972 | MR