On a~class of statistics of polynomial samples
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 126-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $M\ge1$ independent samples each of which is a realisation of some polynomial scheme. The number of outcomes $N$ and the number of samples $M$ are fixed, the sample sizes grow without bound. We study the asymptotic properties of statistics of the form $g(\overline\xi)$, where $g(\overline\xi)$ is a differentiable function of $MN$ real-valued variables, is the vector of relative frequencies of outcomes in samples. Statistics of such a kind are playing an important part in the applied statistical analysis. In this research we expand the capabilities of the well-known $\delta$-method (the linearisation method) in the case of polynomial samples. We prove the asymptotic normality and convergence in distribution of the statistics $g(\overline\xi)$ to quadratic forms of normal random variables (both for the fixed probabilities of outcomes in the case of the null hypothesis and for the case of contigual alternatives to it). We give conditions for both types of convergence.
@article{DM_2009_21_2_a8,
     author = {B. I. Selivanov},
     title = {On a~class of statistics of polynomial samples},
     journal = {Diskretnaya Matematika},
     pages = {126--137},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/}
}
TY  - JOUR
AU  - B. I. Selivanov
TI  - On a~class of statistics of polynomial samples
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 126
EP  - 137
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/
LA  - ru
ID  - DM_2009_21_2_a8
ER  - 
%0 Journal Article
%A B. I. Selivanov
%T On a~class of statistics of polynomial samples
%J Diskretnaya Matematika
%D 2009
%P 126-137
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/
%G ru
%F DM_2009_21_2_a8
B. I. Selivanov. On a~class of statistics of polynomial samples. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 126-137. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/

[1] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, Moskva, 1971

[2] Kramer G., Matematicheskie metody statistiki, GIIL, Moskva, 1948

[3] Cressie N., Read T. R. C., “Multinomial goodness-of-fit tests”, J. Royal Statist. Soc. B, 46 (1984), 440–464 | MR | Zbl

[4] Cressie N., Read T. R. C., Goodness-of-fit statistics for discrete multivariate data, Springer, Berlin, 1988 | MR | Zbl

[5] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, Moskva, 1968 | MR | Zbl

[6] Selivanov B. I., “O statistikakh-differentsiruemykh funktsiyakh chastot iskhodov $M$ polinomialnykh vyborok”, Obozrenie prikladnoi i promyshlennoi matematiki, 12:4 (2005), 872–873

[7] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, GITTL, Moskva, 1956

[8] Selivanov B. I., “O predelnykh raspredeleniyakh statistiki $\chi^2$”, Teoriya veroyatnostei i ee primeneniya, 29:1 (1984), 132–134 | MR | Zbl

[9] Selivanov B. I., “Ob odnom klasse statistik tipa khi-kvadrat”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 926–966

[10] Selivanov B. I., “Semeistvo mnogomernykh statistik khi-kvadrat”, Diskretnaya matematika, 14:3 (2002), 130–142 | MR | Zbl

[11] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1974

[12] Kudryavtsev L. D., Kurs matematicheskogo analiza, T. 2, Vysshaya shkola, Moskva, 1981 | Zbl

[13] Chernoff H., Lehman E. L., “The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit”, Ann. Math. Statist., 25:3 (1954), 579–586 | DOI | MR | Zbl

[14] Good I. J., “Condition for a quadratic form to have a chi-squared distribution”, Biometrika, 56:1 (1969), 215–216 | DOI | Zbl

[15] Good I. J., “Condition for a quadratic form to have a chi-squared distribution. Correction”, Biometrika, 57:1 (1970), 225 | DOI

[16] Dik J. J., Gunst M. C. M., “The distribution of general quadratic form in normal variables”, Statistica Neerlandica, 39:1 (1985) | DOI | MR | Zbl