Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_2_a8, author = {B. I. Selivanov}, title = {On a~class of statistics of polynomial samples}, journal = {Diskretnaya Matematika}, pages = {126--137}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/} }
B. I. Selivanov. On a~class of statistics of polynomial samples. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 126-137. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a8/
[1] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, Moskva, 1971
[2] Kramer G., Matematicheskie metody statistiki, GIIL, Moskva, 1948
[3] Cressie N., Read T. R. C., “Multinomial goodness-of-fit tests”, J. Royal Statist. Soc. B, 46 (1984), 440–464 | MR | Zbl
[4] Cressie N., Read T. R. C., Goodness-of-fit statistics for discrete multivariate data, Springer, Berlin, 1988 | MR | Zbl
[5] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, Moskva, 1968 | MR | Zbl
[6] Selivanov B. I., “O statistikakh-differentsiruemykh funktsiyakh chastot iskhodov $M$ polinomialnykh vyborok”, Obozrenie prikladnoi i promyshlennoi matematiki, 12:4 (2005), 872–873
[7] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, GITTL, Moskva, 1956
[8] Selivanov B. I., “O predelnykh raspredeleniyakh statistiki $\chi^2$”, Teoriya veroyatnostei i ee primeneniya, 29:1 (1984), 132–134 | MR | Zbl
[9] Selivanov B. I., “Ob odnom klasse statistik tipa khi-kvadrat”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 926–966
[10] Selivanov B. I., “Semeistvo mnogomernykh statistik khi-kvadrat”, Diskretnaya matematika, 14:3 (2002), 130–142 | MR | Zbl
[11] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1974
[12] Kudryavtsev L. D., Kurs matematicheskogo analiza, T. 2, Vysshaya shkola, Moskva, 1981 | Zbl
[13] Chernoff H., Lehman E. L., “The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit”, Ann. Math. Statist., 25:3 (1954), 579–586 | DOI | MR | Zbl
[14] Good I. J., “Condition for a quadratic form to have a chi-squared distribution”, Biometrika, 56:1 (1969), 215–216 | DOI | Zbl
[15] Good I. J., “Condition for a quadratic form to have a chi-squared distribution. Correction”, Biometrika, 57:1 (1970), 225 | DOI
[16] Dik J. J., Gunst M. C. M., “The distribution of general quadratic form in normal variables”, Statistica Neerlandica, 39:1 (1985) | DOI | MR | Zbl