Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 112-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the asymptotic normality of the number of absent noncontinuous chains (chains with gaps) of outcomes of independent trials. The asymptotic normality of the number of absent chains of identical outcomes, which has been proved for equiprobable outcomes, is proved in the nonequiprobable case.
@article{DM_2009_21_2_a7,
     author = {M. I. Tikhomirova},
     title = {Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials},
     journal = {Diskretnaya Matematika},
     pages = {112--125},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a7/}
}
TY  - JOUR
AU  - M. I. Tikhomirova
TI  - Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 112
EP  - 125
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a7/
LA  - ru
ID  - DM_2009_21_2_a7
ER  - 
%0 Journal Article
%A M. I. Tikhomirova
%T Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials
%J Diskretnaya Matematika
%D 2009
%P 112-125
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a7/
%G ru
%F DM_2009_21_2_a7
M. I. Tikhomirova. Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 112-125. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a7/

[1] Tikhomirova M. I., “Ob asimptoticheskoi normalnosti chisla nepoyavivshikhsya $s$-tsepochek”, Diskretnaya matematika, 4:2 (1992), 122–129 | MR | Zbl

[2] Tikhomirova M. I., Chistyakov V. P., “Ob asimptotike momentov chisla nepoyavivshikhsya $s$-tsepochek”, Diskretnaya matematika, 9:1 (1997), 12–29 | MR | Zbl

[3] Tikhomirova M. I., Predelnye teoremy dlya chisla nepoyavivshikhsya $s$-tsepochek, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, MIEM, Moskva, 1998

[4] Mikhailov V. G., “Asimptoticheskaya normalnost razdelimykh statistik ot chastot $m$-tsepochek”, Diskretnaya matematika, 1:4 (1989), 92–103 | MR | Zbl

[5] Tikhomirova M. I., “Predelnye raspredeleniya chisla nepoyavivshikhsya tsepochek odinakovykh iskhodov”, Diskretnaya matematika, 20:3 (2008), 40–46 | MR | Zbl

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, Moskva, 1984 | Zbl

[7] Bernshtein C. N., Sobranie sochinenii, T. 4, Nauka, Moskva, 1964

[8] Janson S., “Normal convergence by higher semiinvariants with application to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 305–312 | DOI | MR | Zbl

[9] Mikhailov V. G., “Ob odnoi teoreme Yansona”, Teoriya veroyatnostei i ee primeneniya, 36:1 (1991), 168–170 | MR | Zbl