On reliability of circuits over the bases $\{\sim,\,\oplus\}$, $\{\sim,\,0\}$, $\{\oplus,\,1\}$, $\{\oplus,\vee,1\}$ in the case of faults of type~0 at the outputs of elements
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 102-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of faults of type 0 at the outputs of elements, it is proved that in the bases $\{\sim,\,\oplus\}$, $\{\sim,\,0\}$, $\{\oplus,\,1\}$, $\{\oplus,\vee,1\}$ almost all Boolean functions can be realised by asymptotically best (optimal) with respect to the reliability circuits functioning with unreliability $P(S)\sim\gamma$ as $\gamma\to0$, where $\gamma$ is the probability of the faulty state of an element.
@article{DM_2009_21_2_a6,
     author = {M. A. Alekhina},
     title = {On reliability of circuits over the bases $\{\sim,\&,\oplus\}$, $\{\sim,\&,0\}$, $\{\oplus,\&,1\}$, $\{\oplus,\vee,1\}$ in the case of faults of type~0 at the outputs of elements},
     journal = {Diskretnaya Matematika},
     pages = {102--111},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a6/}
}
TY  - JOUR
AU  - M. A. Alekhina
TI  - On reliability of circuits over the bases $\{\sim,\&,\oplus\}$, $\{\sim,\&,0\}$, $\{\oplus,\&,1\}$, $\{\oplus,\vee,1\}$ in the case of faults of type~0 at the outputs of elements
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 102
EP  - 111
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a6/
LA  - ru
ID  - DM_2009_21_2_a6
ER  - 
%0 Journal Article
%A M. A. Alekhina
%T On reliability of circuits over the bases $\{\sim,\&,\oplus\}$, $\{\sim,\&,0\}$, $\{\oplus,\&,1\}$, $\{\oplus,\vee,1\}$ in the case of faults of type~0 at the outputs of elements
%J Diskretnaya Matematika
%D 2009
%P 102-111
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a6/
%G ru
%F DM_2009_21_2_a6
M. A. Alekhina. On reliability of circuits over the bases $\{\sim,\&,\oplus\}$, $\{\sim,\&,0\}$, $\{\oplus,\&,1\}$, $\{\oplus,\vee,1\}$ in the case of faults of type~0 at the outputs of elements. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 102-111. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a6/

[1] Fon Neiman Dzh., “Veroyatnostnaya logika i sintez nadezhnykh organizmov iz nenadezhnykh komponent”, Avtomaty, IL, Moskva, 1956, 68–139

[2] Redkin N. P., Nadezhnost i diagnostika skhem, Izd-vo MGU, Moskva, 1992

[3] Tarasov V. V., “K sintezu nadezhnykh skhem iz nenadezhnykh elementov”, Matem. zametki, 20:3 (1976), 391–400 | MR | Zbl

[4] Alekhina M. A., Sintez, nadezhnost i slozhnost skhem iz nenadezhnykh funktsionalnykh elementov, Dissertatsiya na soiskanie stepeni doktora fiz.-mat. nauk, Penza, 2004

[5] Alekhina M. A., “O nadezhnosti skhem iz nenadezhnykh elementov $x/y$”, Materialy XI Mezhgosudarstvennoi shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem”, T. 1, Izd-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, Moskva, 2001, 9–14

[6] Alekhina M. A., “Verkhnie otsenki nenadezhnosti skhem v bazisakh iz dvukhvkhodovykh funktsionalnykh elementov pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Materialy IV Molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam, Izd-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, Moskva, 2000, 12–20

[7] Alekhina M. A., “O nadezhnosti dvoistvennykh skhem”, Materialy XI Mezhgosudarstvennoi shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem”, T. 1, Izd-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, Moskva, 2001, 6–8