On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem on completeness of sets of $S$-functions, the determinate functions such that the automaton calculating them realises in each state functions which emanate no value. We assume that each set of $S$-functions whose completeness is checked in this paper contains all $S$-functions depending on at most one variable. We describe all $A$-precomplete classes of such sets. It is shown that there exists an algorithm recognising $A$-completeness of $S$-sets of one-place determinate functions containing all one-place determinate $S$-functions.
@article{DM_2009_21_2_a3,
author = {M. A. Podkolzina},
title = {On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions},
journal = {Diskretnaya Matematika},
pages = {75--87},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/}
}
TY - JOUR AU - M. A. Podkolzina TI - On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions JO - Diskretnaya Matematika PY - 2009 SP - 75 EP - 87 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/ LA - ru ID - DM_2009_21_2_a3 ER -
%0 Journal Article %A M. A. Podkolzina %T On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions %J Diskretnaya Matematika %D 2009 %P 75-87 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/ %G ru %F DM_2009_21_2_a3
M. A. Podkolzina. On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/