On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on completeness of sets of $S$-functions, the determinate functions such that the automaton calculating them realises in each state functions which emanate no value. We assume that each set of $S$-functions whose completeness is checked in this paper contains all $S$-functions depending on at most one variable. We describe all $A$-precomplete classes of such sets. It is shown that there exists an algorithm recognising $A$-completeness of $S$-sets of one-place determinate functions containing all one-place determinate $S$-functions.
@article{DM_2009_21_2_a3,
     author = {M. A. Podkolzina},
     title = {On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions},
     journal = {Diskretnaya Matematika},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/}
}
TY  - JOUR
AU  - M. A. Podkolzina
TI  - On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 75
EP  - 87
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/
LA  - ru
ID  - DM_2009_21_2_a3
ER  - 
%0 Journal Article
%A M. A. Podkolzina
%T On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
%J Diskretnaya Matematika
%D 2009
%P 75-87
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/
%G ru
%F DM_2009_21_2_a3
M. A. Podkolzina. On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/