On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on completeness of sets of $S$-functions, the determinate functions such that the automaton calculating them realises in each state functions which emanate no value. We assume that each set of $S$-functions whose completeness is checked in this paper contains all $S$-functions depending on at most one variable. We describe all $A$-precomplete classes of such sets. It is shown that there exists an algorithm recognising $A$-completeness of $S$-sets of one-place determinate functions containing all one-place determinate $S$-functions.
@article{DM_2009_21_2_a3,
     author = {M. A. Podkolzina},
     title = {On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions},
     journal = {Diskretnaya Matematika},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/}
}
TY  - JOUR
AU  - M. A. Podkolzina
TI  - On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 75
EP  - 87
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/
LA  - ru
ID  - DM_2009_21_2_a3
ER  - 
%0 Journal Article
%A M. A. Podkolzina
%T On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
%J Diskretnaya Matematika
%D 2009
%P 75-87
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/
%G ru
%F DM_2009_21_2_a3
M. A. Podkolzina. On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a3/

[1] Buevich V. A., Podkolzina M. A., “Kriterii polnoty $S$-mnozhestv determinirovannykh funktsii”, Matem. voprosy kibernetiki, 16, 2007, 191–238

[2] Buevich V. A., “Ob algoritmicheskoi nerazreshimosti raspoznavaniya $A$-polnoty dlya ogranichenno-determinirovannykh funktsii”, Matem. zametki, 11:6 (1972), 687–697 | MR | Zbl

[3] Kudryavtsev V. B., “O svoistvakh $S$-sistem funktsii $k$-znachnoi logiki”, Elektronische Informationsverarbeitung und Kybernetik, 9:1–2 (1973), 81–105

[4] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnykh logikakh”, Trudy Matematicheskogo Instituta im. V. A. Steklova, 51, 1958, 5–142 | MR | Zbl

[5] Buevich V. A., “O $\tau$-polnote sistem, soderzhaschikh vse odnomestnye determinirovannye funktsii”, Matem. voprosy kibernetiki, 8, 1999, 231–254 | MR | Zbl

[6] Buevich V. A., Klindukova T. E., “O suschestvovanii algoritma dlya raspoznavaniya $A$-polnoty sistem, soderzhaschikh vse odnomestnye ogranichenno-determinirovannye funktsii”, Matem. voprosy kibernetiki, 8, 1999, 289–297 | MR | Zbl

[7] Slupecki J., “Kryterium pelnosci wielowartosciowych systemów logiki zdan”, Comptes Rendus des Séances de la Société des Lettres de Varsovie, Classe III, 32 Année, 1939, 102–109

[8] Salomaa A., “On basis groups for the set of functions over a finite domain”, Ann. Acad. Sci. Finnicae, 338 (1963), 1–15 | MR

[9] Rosenberg I., “Über die funktionale Vollständigkeit in den mehrwertigen Logiken”, Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd, 80:4 (1970), 3–93 | MR