The diameter of the ridge-graph of a~cyclic polytope
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 146-152

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the diameter of the the ridge-graph, that is, the graph of the polytope $C^*(d,n)$ dual to the given polytope, where $d$ is the dimension and $n$ is the number of facets of the polytope, is equal to $n-d-\max\{0,\lceil(n-2d)/(\lfloor d/2\rfloor+1)\rceil\}$.
@article{DM_2009_21_2_a10,
     author = {A. N. Maksimenko},
     title = {The diameter of the ridge-graph of a~cyclic polytope},
     journal = {Diskretnaya Matematika},
     pages = {146--152},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/}
}
TY  - JOUR
AU  - A. N. Maksimenko
TI  - The diameter of the ridge-graph of a~cyclic polytope
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 146
EP  - 152
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/
LA  - ru
ID  - DM_2009_21_2_a10
ER  - 
%0 Journal Article
%A A. N. Maksimenko
%T The diameter of the ridge-graph of a~cyclic polytope
%J Diskretnaya Matematika
%D 2009
%P 146-152
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/
%G ru
%F DM_2009_21_2_a10
A. N. Maksimenko. The diameter of the ridge-graph of a~cyclic polytope. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 146-152. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/