Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_2_a10, author = {A. N. Maksimenko}, title = {The diameter of the ridge-graph of a~cyclic polytope}, journal = {Diskretnaya Matematika}, pages = {146--152}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/} }
A. N. Maksimenko. The diameter of the ridge-graph of a~cyclic polytope. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 146-152. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a10/
[1] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, Moskva, 1988 | MR
[2] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, Moskva, 1981 | MR | Zbl
[3] Altshuler A., Bokowski J., Steinberg L., “The classification of simplicial 3-spheres with nine vertices into polytopes and non-polytopes”, Discrete Math., 31 (1980), 115–124 | DOI | MR | Zbl
[4] Carathéodory C., “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64 (1907), 95–115 | DOI | MR | Zbl
[5] Dantzig G. B., Linear programming and extensions, Princeton Univ. Press, Princeton, 1963 | MR | Zbl
[6] Ferrez J.-A., Fukuda K., Liebling T. M., “Parallel implementation of graph diameter algorithms”, EPFL Supercomputing Review, 1998, no. 10, 3–6
[7] Fritzsche K., Holt F. B., “More polytopes meeting the conjectured Hirsch bound”, Discrete Math., 205 (1999), 77–84 | DOI | MR | Zbl
[8] Gale D., “Neighboring vertices on a convex polyhedron”, Ann. Math. Stud., 38 (1956), 255–264 | MR | Zbl
[9] Gale D., “Neighborly and cyclic polytopes”, Proc. Symp. Pure Math., 7 (1963), 225–232 | MR | Zbl
[10] Grünbaum B., Convex polytopes, Wiley, New York, 1967 | MR | Zbl
[11] Holt F. B., Klee V., “Many polytopes meeting the conjectured Hirsch bound”, Discrete Comput. Geom., 20 (1998), 1–17 | DOI | MR | Zbl
[12] Kalai G., “Polytope skeletons and paths”, Handbook of discrete and computational geometry, eds. Goodman J. E. et al., CRC Press, Boca Raton, FL, 1997, 331–344 | MR | Zbl
[13] Klee V., “Diameters of polyhedral graphs”, Canad. J. Math., 16 (1964), 602–614 | MR | Zbl
[14] Klee V., “Paths on polyhedra. II”, Pacific J. Math., 17 (1966), 249–262 | MR | Zbl
[15] Klee V., Walkup D. W., “The $d$-step conjecture for polyhedra of dimension $d6$”, Acta Math., 133 (1967), 53–78 | DOI | MR
[16] Lagarias J. C., Prabhu N., “Counting $d$-step paths in extremal Dantzig figures”, Discrete Comput. Geom., 19 (1998), 19–31 | DOI | MR | Zbl
[17] McMullen P., “The maximum numbers of faces of a convex polytope”, Mathematika, Lond., 17 (1970), 179–184 | MR | Zbl