Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 43-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite cooperative game of several players with parametric principle of optimality such that the relations between players in a coalition are based on the Pareto maximum. The introduction of this principle allows us to find a link between such classical concepts as the Pareto optimality and the Nash equilibrium. We carry out a quantitative analysis of the stability of the game situation which is optimal for the given partition method with respect to perturbations of parameters of the payoff functions in the space with the Hölder $l_p$-metric, $1\le p\le\infty$. We obtain a formula for the radius of stability for such situation, so we are able to point out the limiting level for perturbations of the game parameters such that the optimality of the situation is preserved.
@article{DM_2009_21_2_a1,
     author = {V. A. Emelichev and O. V. Karelkina},
     title = {Finite cooperative games: parametrisation of the concept of equilibrium (from {Pareto} to {Nash)} and stability of the efficient situation in the {H\"older} metric},
     journal = {Diskretnaya Matematika},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - O. V. Karelkina
TI  - Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 43
EP  - 50
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/
LA  - ru
ID  - DM_2009_21_2_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A O. V. Karelkina
%T Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric
%J Diskretnaya Matematika
%D 2009
%P 43-50
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/
%G ru
%F DM_2009_21_2_a1
V. A. Emelichev; O. V. Karelkina. Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 43-50. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/

[1] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, Moskva, 1985 | MR | Zbl

[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, Moskva, 1998 | MR | Zbl

[3] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, ed. Vorobev N. N., Fizmatgiz, Moskva, 1961, 205–221 | MR

[4] Mirkin B. G., Problema gruppovogo vybora, Nauka, Moskva, 1974 | MR | Zbl

[5] Kharshani Dzh., Zelten R., Obschaya teoriya vybora ravnovesiya v igrakh, Ekonomicheskaya shkola, Sankt-Peterburg, 2001

[6] Bukhtoyarov S. E., Emelichev V. A., “Konechnye koalitsionnye igry: parametrizatsiya printsipa optimalnosti (ot Pareto do Nesha) i ustoichivost obobschenno-effektivnykh situatsii”, Dokl. NAN Belarusi, 46:6 (2002), 36–38 | MR

[7] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Voprosy ustoichivosti vektornykh diskretnykh zadach s parametricheskim printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2003, no. 4, 155–166 | MR | Zbl

[8] Emelichev V. A., Kuzmin K. G., “Konechnye koalitsionnye igry s parametricheskoi kontseptsiei ravnovesiya v usloviyakh neopredelennosti”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2006, no. 2, 117–122 | MR

[9] Bukhtoyarov S. E., Emelichev V. A., “Mera ustoichivosti konechnoi koalitsionnoi igry s parametricheskim (ot Pareto do Nesha) printsipom optimalnosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:7 (2006), 1258–1264 | MR

[10] Gurevskii E. E., Emelichev V. A., Platonov A. A., “Ob ustoichivosti konechnoi koalitsionnoi igry s obobschennoi kontseptsiei ravnovesiya”, Trudy Instituta matematiki NAN Belarusi, 15:1 (2007), 47–55 | MR

[11] Pareto V., Manuel d'économie politique, Giard Brière, Paris, 1909

[12] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control and Cybernetics, 33 (2004), 127–132 | MR | Zbl

[13] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Dokl. RAN, 401:6 (2005), 733–735 | MR

[14] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya v metrike Geldera”, Kibernetika i sistemnyi analiz, 2006, no. 4, 175–181 | Zbl

[15] Gurevskii E. E., Emelichev V. A., “Ob ustoichivosti effektivnogo resheniya vektornoi bulevoi zadachi maksimizatsii modulei lineinykh funktsii”, Diskretnaya matematika, 19:2 (2007), 45–50 | MR | Zbl