Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_2_a1, author = {V. A. Emelichev and O. V. Karelkina}, title = {Finite cooperative games: parametrisation of the concept of equilibrium (from {Pareto} to {Nash)} and stability of the efficient situation in the {H\"older} metric}, journal = {Diskretnaya Matematika}, pages = {43--50}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/} }
TY - JOUR AU - V. A. Emelichev AU - O. V. Karelkina TI - Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric JO - Diskretnaya Matematika PY - 2009 SP - 43 EP - 50 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/ LA - ru ID - DM_2009_21_2_a1 ER -
%0 Journal Article %A V. A. Emelichev %A O. V. Karelkina %T Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric %J Diskretnaya Matematika %D 2009 %P 43-50 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/ %G ru %F DM_2009_21_2_a1
V. A. Emelichev; O. V. Karelkina. Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the H\"older metric. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 43-50. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a1/
[1] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, Moskva, 1985 | MR | Zbl
[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, Moskva, 1998 | MR | Zbl
[3] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, ed. Vorobev N. N., Fizmatgiz, Moskva, 1961, 205–221 | MR
[4] Mirkin B. G., Problema gruppovogo vybora, Nauka, Moskva, 1974 | MR | Zbl
[5] Kharshani Dzh., Zelten R., Obschaya teoriya vybora ravnovesiya v igrakh, Ekonomicheskaya shkola, Sankt-Peterburg, 2001
[6] Bukhtoyarov S. E., Emelichev V. A., “Konechnye koalitsionnye igry: parametrizatsiya printsipa optimalnosti (ot Pareto do Nesha) i ustoichivost obobschenno-effektivnykh situatsii”, Dokl. NAN Belarusi, 46:6 (2002), 36–38 | MR
[7] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Voprosy ustoichivosti vektornykh diskretnykh zadach s parametricheskim printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2003, no. 4, 155–166 | MR | Zbl
[8] Emelichev V. A., Kuzmin K. G., “Konechnye koalitsionnye igry s parametricheskoi kontseptsiei ravnovesiya v usloviyakh neopredelennosti”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2006, no. 2, 117–122 | MR
[9] Bukhtoyarov S. E., Emelichev V. A., “Mera ustoichivosti konechnoi koalitsionnoi igry s parametricheskim (ot Pareto do Nesha) printsipom optimalnosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:7 (2006), 1258–1264 | MR
[10] Gurevskii E. E., Emelichev V. A., Platonov A. A., “Ob ustoichivosti konechnoi koalitsionnoi igry s obobschennoi kontseptsiei ravnovesiya”, Trudy Instituta matematiki NAN Belarusi, 15:1 (2007), 47–55 | MR
[11] Pareto V., Manuel d'économie politique, Giard Brière, Paris, 1909
[12] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control and Cybernetics, 33 (2004), 127–132 | MR | Zbl
[13] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Dokl. RAN, 401:6 (2005), 733–735 | MR
[14] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya v metrike Geldera”, Kibernetika i sistemnyi analiz, 2006, no. 4, 175–181 | Zbl
[15] Gurevskii E. E., Emelichev V. A., “Ob ustoichivosti effektivnogo resheniya vektornoi bulevoi zadachi maksimizatsii modulei lineinykh funktsii”, Diskretnaya matematika, 19:2 (2007), 45–50 | MR | Zbl