Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_1_a4, author = {D. V. Paduchikh}, title = {On the automorphisms of the strongly regular graph with parameters $(85, 14, 3, 2)$}, journal = {Diskretnaya Matematika}, pages = {78--104}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_1_a4/} }
D. V. Paduchikh. On the automorphisms of the strongly regular graph with parameters $(85, 14, 3, 2)$. Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 78-104. http://geodesic.mathdoc.fr/item/DM_2009_21_1_a4/
[1] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR | Zbl
[3] Makhnev A. A., Nosov V. V., “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=1$, $\mu=2$”, Matem. sbornik, 195:3 (2004), 47–68 | MR | Zbl
[4] Makhnev A. A., Minakova I. M., “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskretnaya matematika, 16:1 (2004), 95–104 | MR | Zbl
[5] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercise in the theory of graph spectra”, European J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[6] Makhnev A. A., Paduchikh D. V., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Algebra, logika i kibernetika, Tezisy dokladov, Irkutskii gosuniversitet, Irkutsk, 2004, 181–183
[7] Walter J., “The characterization of finite groups with Abelian Sylov 2-subgroups”, Ann. Math., 89 (1969), 405–514 | DOI | MR | Zbl
[8] Bombieri E., “Thompson's problem $(\sigma^2=3)$”, Invent. Math., 58 (1980), 77–100 | DOI | MR | Zbl
[9] Cameron P., Permutation groups, Cambridge Univ. Press, Cambridge, 1999 | MR