On the asymptotic behaviour of the probability of existence of equivalent tuples with nontrivial structure in a~random sequence
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a long enough sequence of discrete random variables, as a rule, an $s$-tuple exists of nontrivial structure, that is, a tuple with at least one repeated symbol. We consider the case where the sequence consists of $n+s-1$ independent random variables taking the values $1,\dots,N$ with equal probabilities. It is shown that as $n\to\infty$, $ns^3N^{-2}\to0$ the probability of that in the sequence $s$-tuples exist with the same nontrivial structure is equal to $1-(1+n/N)^se^{-sn/N}(1+o(1))$.
@article{DM_2008_20_4_a9,
     author = {V. G. Mikhailov},
     title = {On the asymptotic behaviour of the probability of existence of equivalent tuples with nontrivial structure in a~random sequence},
     journal = {Diskretnaya Matematika},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a9/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - On the asymptotic behaviour of the probability of existence of equivalent tuples with nontrivial structure in a~random sequence
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 113
EP  - 119
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a9/
LA  - ru
ID  - DM_2008_20_4_a9
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T On the asymptotic behaviour of the probability of existence of equivalent tuples with nontrivial structure in a~random sequence
%J Diskretnaya Matematika
%D 2008
%P 113-119
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a9/
%G ru
%F DM_2008_20_4_a9
V. G. Mikhailov. On the asymptotic behaviour of the probability of existence of equivalent tuples with nontrivial structure in a~random sequence. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a9/

[1] Mikhailov V. G., Shoitov A. M., “Strukturnaya ekvivalentnost $s$-tsepochek v sluchainykh diskretnykh posledovatelnostyakh”, Diskretnaya matematika, 15:4 (2003), 7–34 | MR | Zbl

[2] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford Univ. Press, Oxford, 1992 | MR | Zbl