Finite generability of some groups of recursive permutations
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 61-78
Let a class $\mathcal Q$ of functions of natural argument be closed with respect to a superposition and contain the identity function. The set of permutations $f$ such that $f,f^{-1}\in\mathcal Q$ forms a group (with respect to the operation of composition) which we denote by $Gr(\mathcal Q)$. We prove the finite generability of $Gr(\mathcal Q)$ for a large family of classes $\mathcal Q$ satisfying some conditions. As an example, we consider the class $\mathrm{FP}$ of functions which are computable in polynomial time by a Turing machine. The obtained result is generalised to the classes $\mathscr E^n$ of the Grzegorczyk system, $n\ge2$. It is proved that for the considered classes $\mathcal Q$ the minimum number of permutations generating the group $Gr(\mathcal Q)$ is equal to two. More exactly, there exist two permutations of the given group such that any permutation of this group can be obtained by compositions of these permutations.
@article{DM_2008_20_4_a4,
author = {S. A. Volkov},
title = {Finite generability of some groups of recursive permutations},
journal = {Diskretnaya Matematika},
pages = {61--78},
year = {2008},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a4/}
}
S. A. Volkov. Finite generability of some groups of recursive permutations. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 61-78. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a4/
[1] Gzhegorchik A., “Nekotorye klassy rekursivnykh funktsii”, Problemy matematicheskoi logiki, Mir, Moskva, 1970, 9–49 | MR
[2] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, Moskva, 1986 | MR
[3] Marchenkov C. S., “Bazisy po superpozitsii v klassakh rekursivnykh funktsii”, Matem. voprosy kibernetiki, 3 (1991), 115–139 | MR | Zbl
[4] Marchenkov S. S., Elementarnye rekursivnye funktsii, MTsNMO, Moskva, 2003
[5] Muchnik A. A., “O dvukh podkhodakh k klassifikatsii rekursivnykh funktsii”, Problemy matematicheskoi logiki, Mir, Moskva, 1970, 123–138 | MR