Limit distributions of the number of vectors satisfying a~linear relation
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 120-135
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_T$ be independent random elements uniformly distributed on a finite Abelian group $G$. In this paper, we give conditions under which the number of ordered sets $(i_1,\dots,i_k)$ of pairwise distinct numbers in $\{1,\dots,T\}$ such that $a_1X_{i_1}+\dots+a_kX_{i_k}=0$ where $a_1,\dots,a_k$ are fixed integers has the Poisson limit distribution as $T\to\infty$ and the group $G$ varies with $T$. We give an example of a sequence of groups $G$ for which the limit distribution of the number of ordered sets is the compound Poisson distribution.
@article{DM_2008_20_4_a10,
author = {V. I. Kruglov},
title = {Limit distributions of the number of vectors satisfying a~linear relation},
journal = {Diskretnaya Matematika},
pages = {120--135},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a10/}
}
V. I. Kruglov. Limit distributions of the number of vectors satisfying a~linear relation. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 120-135. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a10/