The closure operator with the equality predicate branching on the set of partial Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set $P_2^*$ of partial Boolean functions, we consider the closure operator with the equality predicate branching. We prove that each closed class with respect to this operator is generated in $P_2^*$ by the set of all its functions depending on at most two variables. In the paper, all maximal and submaximal classes in $P_2^*$ and all closed classes generated by one one-place or two-place function are presented. This research was supported by the Russian Foundation for Basis Research, grant 06–01–00438.
@article{DM_2008_20_3_a7,
     author = {S. S. Marchenkov},
     title = {The closure operator with the equality predicate branching on the set of partial {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a7/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - The closure operator with the equality predicate branching on the set of partial Boolean functions
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 80
EP  - 88
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a7/
LA  - ru
ID  - DM_2008_20_3_a7
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T The closure operator with the equality predicate branching on the set of partial Boolean functions
%J Diskretnaya Matematika
%D 2008
%P 80-88
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a7/
%G ru
%F DM_2008_20_3_a7
S. S. Marchenkov. The closure operator with the equality predicate branching on the set of partial Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 80-88. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a7/

[1] Alekseev V. B., Voronenko A. A., “O nekotorykh zamknutykh klassakh v chastichnoi dvuznachnoi logike”, Diskretnaya matematika, 6:4 (1994), 58–79 | MR | Zbl

[2] Golunkov Yu. V., “Kriterii polnoty sistemy operatsii v operatornykh algoritmakh, realizuyuschikh funktsii $k$-znachnoi logiki”, Veroyatnostnye metody i kibernetika, 17 (1980), 23–34 | MR | Zbl

[3] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, Moskva, 2000 | MR | Zbl

[4] Marchenkov S. S., “Operatory zamykaniya s razvetvleniem po predikatu”, Vestnik MGU. Ser. 1. Matem., mekh., 2003, no. 6, 37–39 | MR | Zbl

[5] Taimanov V. A., “O funktsionalnykh sistemakh $k$-znachnoi logiki s operatsiyami zamykaniya programmnogo tipa”, Dokl. AN SSSR, 268:6 (1983), 1307–1310 | MR | Zbl

[6] Freivald R. V., “Kriterii polnoty dlya chastichnykh funktsii algebry logiki i mnogoznachnykh logik”, Dokl. AN SSSR, 167:6 (1966), 1249–1250 | MR | Zbl

[7] Freivald R. V., “Funktsionalnaya polnota dlya ne vsyudu opredelennykh funktsii algebry logiki”, Diskretnyi analiz, 1966, no. 8, 55–68 | MR | Zbl

[8] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986 | MR | Zbl

[9] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, Moskva, 1966 | MR | Zbl