Asymptotic bounds for the affinity level for almost all Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the asymptotic behaviour of one of the parameters of the Boolean functions known as the affinity level. We show that almost all Boolean functions of $n$ variables have the generalised affinity level exceeding $n-\alpha\log_2n$, $\alpha>1$, obtain an asymptotic upper bound for the partial affinity level, consider the asymptotic behaviour of the affinity level for the quadratic Boolean functions.
@article{DM_2008_20_3_a6,
     author = {M. L. Buryakov},
     title = {Asymptotic bounds for the affinity level for almost all {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {73--79},
     year = {2008},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/}
}
TY  - JOUR
AU  - M. L. Buryakov
TI  - Asymptotic bounds for the affinity level for almost all Boolean functions
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 73
EP  - 79
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/
LA  - ru
ID  - DM_2008_20_3_a6
ER  - 
%0 Journal Article
%A M. L. Buryakov
%T Asymptotic bounds for the affinity level for almost all Boolean functions
%J Diskretnaya Matematika
%D 2008
%P 73-79
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/
%G ru
%F DM_2008_20_3_a6
M. L. Buryakov. Asymptotic bounds for the affinity level for almost all Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Korrelyatsionnaya immunnost i realnaya sekretnost”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2004, 165–170

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Kombiniruyuschie $k$-affinnye funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2004, 176–178

[3] Buryakov M. L., Logachev O. A., “Ob urovne affinnosti bulevykh funktsii”, Diskretnaya matematika, 17:4 (2005), 98–107 | MR | Zbl

[4] Buryakov M. L., “O svyazi urovnya affinnosti s kriptograficheskimi parametrami bulevykh funktsii”, Diskretnaya matematika, 20:2 (2008), 3–14

[5] Buryakov M. L., Logachev O. A., “O raspredelenii urovnya affinnosti na mnozhestve bulevykh funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2005, 141–146

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004

[7] Shennon K., “Sintez dvukhpolyusnykh pereklyuchatelnykh skhem”, Raboty po teorii informatsii i kibernetike, IL, Moskva, 1963, 59–105

[8] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[9] Matula D. W., The largest clique size in random graph, Techn. Rep. CS 7608, Dept. Comput. Sci., Southern Methodist Univ., 1976