Asymptotic bounds for the affinity level for almost all Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the asymptotic behaviour of one of the parameters of the Boolean functions known as the affinity level. We show that almost all Boolean functions of $n$ variables have the generalised affinity level exceeding $n-\alpha\log_2n$, $\alpha>1$, obtain an asymptotic upper bound for the partial affinity level, consider the asymptotic behaviour of the affinity level for the quadratic Boolean functions.
@article{DM_2008_20_3_a6,
     author = {M. L. Buryakov},
     title = {Asymptotic bounds for the affinity level for almost all {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {73--79},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/}
}
TY  - JOUR
AU  - M. L. Buryakov
TI  - Asymptotic bounds for the affinity level for almost all Boolean functions
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 73
EP  - 79
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/
LA  - ru
ID  - DM_2008_20_3_a6
ER  - 
%0 Journal Article
%A M. L. Buryakov
%T Asymptotic bounds for the affinity level for almost all Boolean functions
%J Diskretnaya Matematika
%D 2008
%P 73-79
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/
%G ru
%F DM_2008_20_3_a6
M. L. Buryakov. Asymptotic bounds for the affinity level for almost all Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Korrelyatsionnaya immunnost i realnaya sekretnost”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2004, 165–170

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Kombiniruyuschie $k$-affinnye funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2004, 176–178

[3] Buryakov M. L., Logachev O. A., “Ob urovne affinnosti bulevykh funktsii”, Diskretnaya matematika, 17:4 (2005), 98–107 | MR | Zbl

[4] Buryakov M. L., “O svyazi urovnya affinnosti s kriptograficheskimi parametrami bulevykh funktsii”, Diskretnaya matematika, 20:2 (2008), 3–14

[5] Buryakov M. L., Logachev O. A., “O raspredelenii urovnya affinnosti na mnozhestve bulevykh funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, MTsNMO, Moskva, 2005, 141–146

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004

[7] Shennon K., “Sintez dvukhpolyusnykh pereklyuchatelnykh skhem”, Raboty po teorii informatsii i kibernetike, IL, Moskva, 1963, 59–105

[8] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[9] Matula D. W., The largest clique size in random graph, Techn. Rep. CS 7608, Dept. Comput. Sci., Southern Methodist Univ., 1976