Asymptotic bounds for the affinity level for almost all Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the asymptotic behaviour of one of the parameters of the Boolean functions known as the affinity level. We show that almost all Boolean functions of $n$ variables have the generalised affinity level exceeding $n-\alpha\log_2n$, $\alpha>1$, obtain an asymptotic upper bound for the partial affinity level, consider the asymptotic behaviour of the affinity level for the quadratic Boolean functions.
@article{DM_2008_20_3_a6,
author = {M. L. Buryakov},
title = {Asymptotic bounds for the affinity level for almost all {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {73--79},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/}
}
M. L. Buryakov. Asymptotic bounds for the affinity level for almost all Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 73-79. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a6/