Provable security of digital signatures in the tamper-proof device model
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 147-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proofs of security for practical signature schemes are known in idealised models only. In the present paper, we consider the tamper-proof device model that does not use ideal primitives. Instead of access to a random oracle each participant is provided with tamper-proof device implementing a private-key cryptosystem. The hash-value of a message to be signed is submitted to the tamper-proof device for encryption and this encrypted value is used in the signature generation algorithm. In this model, we prove, modulo a physical assumption, a necessary and sufficient condition for security of the GOST signature scheme.
@article{DM_2008_20_3_a13,
     author = {N. P. Varnovskii},
     title = {Provable security of digital signatures in the tamper-proof device model},
     journal = {Diskretnaya Matematika},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a13/}
}
TY  - JOUR
AU  - N. P. Varnovskii
TI  - Provable security of digital signatures in the tamper-proof device model
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 147
EP  - 159
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a13/
LA  - ru
ID  - DM_2008_20_3_a13
ER  - 
%0 Journal Article
%A N. P. Varnovskii
%T Provable security of digital signatures in the tamper-proof device model
%J Diskretnaya Matematika
%D 2008
%P 147-159
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a13/
%G ru
%F DM_2008_20_3_a13
N. P. Varnovskii. Provable security of digital signatures in the tamper-proof device model. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 147-159. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a13/

[1] Brown D., “On the provable security of ECDSA”, Designs, Codes and Cryptography, 35:1 (2005), 119–152 | DOI | MR

[2] Canetti R., Goldreich O., Halevi S., “The random oracle methodology revisited”, Proc. 30th ACM Symposium on Theory of Computing, ACM, 1998, 209–218 | Zbl

[3] Dent A., “Adapting the weaknesses of the random oracle model to the generic group model”, Lect. Notes Comput. Sci., 2501, 2002, 95–104 | MR

[4] Fiat A., Shamir A., “How to prove yourself: practical solutions to identification and signature problems”, Lect. Notes Comput. Sci., 263, 1987, 186–194 | MR | Zbl

[5] Goldwasser S., Micali S., “Probabilistic encryption”, J. Computer and System Sci., 28:2 (1984), 270–299 | DOI | MR | Zbl

[6] Goldwasser S., Micali S., Rivest R., “A secure digital signature scheme”, SIAM J. Comput., 17:2 (1988), 281–308 | DOI | MR | Zbl

[7] Naor M., Yung M., “Universal one-way hash functions and their cryptographic applications”, Proc. 21st ACM Symposium on Theory of Computing, ACM, 1989, 33–43

[8] Pointcheval D., Stern J., “Security proofs for signature schemes”, Lect. Notes Comput. Sci., 1070, 1996, 387–398 | MR

[9] Rompel J., “One-way functions are necessary and sufficient for secure signatures”, Proc 22nd ACM Symposium on Theory of Computing, ACM, 1990, 387–394

[10] Shain M., “Security in electronic funds transfer: message integrity in money transfer and bond settlements through GE information services global network”, Computers and Security, 8 (1989), 209–221 | DOI