Finite probabilistic structures
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 19-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Consideration of the field of events in the theory of probability gives rise to the notion of the field of events $\mathscr F(B)$ consisting of a set of subsets of some set $B$. On the field $\mathscr F(B)$, two algebraic structures are naturally defined. These are the Boolean algebra $\mathscr A(\mathscr F(B))$ with the operations of union, intersection and complement, and the lattice $L(\mathscr F(B))$, where the order is defined according to inclusion of the sets of $\mathscr F(B)$. In this paper, we consider one more algebraic structure on $\mathscr F(B)$ and the abstract variant of this structure, the so-called probabilistic structure, which is closely related to properties of the measure on $\mathscr F(B)$.
@article{DM_2008_20_3_a1,
     author = {V. M. Maksimov},
     title = {Finite probabilistic structures},
     journal = {Diskretnaya Matematika},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a1/}
}
TY  - JOUR
AU  - V. M. Maksimov
TI  - Finite probabilistic structures
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 19
EP  - 27
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a1/
LA  - ru
ID  - DM_2008_20_3_a1
ER  - 
%0 Journal Article
%A V. M. Maksimov
%T Finite probabilistic structures
%J Diskretnaya Matematika
%D 2008
%P 19-27
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a1/
%G ru
%F DM_2008_20_3_a1
V. M. Maksimov. Finite probabilistic structures. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 19-27. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a1/